Advertisement

Abnormalities of Glomerular Eicosanoid Metabolism in States of Glomerular Hyperfiltration

  • Morris Schambelan
  • Burl R. Don
  • George A. Kaysen
  • Susan Blake
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 259)

Abstract

The glomerulus is a complex structure that functions primarily to produce an ultrafiltrate of plasma. Micropuncture studies in the Munich-Wistar rat have identified the major physical determinants of the glomerular filtration rate (GFR): glomerular plasma flow; afferent protein concentration; transcapillary hydraulic-pressure difference; and the glomerular capillary ultrafiltration coefficient (Kf) (1). Studies in this model also indicate that a number of circulating hormones (e.g., parathyroid hormone, vasopressin), as well as other biological messengers that are produced in the kidney and that act locally through an autacrine or paracrine mechanism (prostaglandins, angiotensin II, histamine, and brady-kinin), can affect the GFR (2). In addition to vasoactive effects on the afferent and efferent renal arterioles with subsequent alteration of renal vascular resistance, many of these substances affect the filtration process by a reduction in Kf, an action that appears to be mediated by contraction of the glomerular mesangial cell and reduction of the glomerular capillary surface area. This may be due to a direct contractile effect of the agonist on the mesangial cell, as in the case of angiotensin II and vasopressin, or by secondary activation of the renin-angiotensin system (2–3).

Keywords

Diabetic Nephropathy Renal Plasma Flow Dietary Protein Intake Glomerular Hyperfiltration Angiotensin Converting Enzyme Inhibitor Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.M. Brenner and H.D. Humes, Mechanics of glomerular ultrafiltration, N. Engl. J. Med. 297:148–154 (1977).PubMedCrossRefGoogle Scholar
  2. 2.
    L.D. Dworkin, I. Ichikawa, B.M. Brenner, Hormonal modulation of glomerular function, Am. J. Phvsiol. 244:F95-F104 (1983).Google Scholar
  3. 3.
    N. Schor, I. Ichikawa, B.M. Brenner, Mechanisms of action of various hormones and vasoactive substances on glomerular ultrafiltration in the rat, Kidney Int. 20:442–451 (1981).PubMedCrossRefGoogle Scholar
  4. 4.
    J. Sraer, J-D. Sraer, D. Chansel, F. Russo-Marie, B. Kouznetzova, R. Ardaillou, Prostaglandin synthesis by isolated rat renal glomeruli, Mol. Cell Endocrinol. 16:29–37 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    A. Hassid, M. Konieczkowski, M.J. Dunn, Prostaglandin synthesis in isolated rat kidney glomeruli, Proc. Natl. Acad. Sci. USA 76: 1155–1159 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    D. Schlondorff, S. Roczniak, J.A. Satriano, V.W. Folkert, Prostaglandin synthesis by isolated rat glomeruli: effect of angiotensin II, Am. J. Physiol. 238:F486–F495 (1980).Google Scholar
  7. 7.
    J. Sraer, J. Foidart, D. Chansel, P. Mahieu, B. Kouznetzova, R. Ardaillou, Prostaglandin synthesis by mesangial and epithelial glomerular cultured cells, FEBS Lett. 104:420–424 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    J.I. Kreisberg, M.J. Karnovsky, L. Levine, Prostaglandin production by homogeneous cultures of rat glomerular epithelial and mesangial cells, Kidney Int. 22:355–359 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    L.A. Scharschmidt and M.J. Dunn, Prostaglandin synthesis by rat glomerular mesangial cells in culture--Effects of angiotensin II and argi-nine vasopressin, J. Clin. Invest. 71:1756–1764 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    C. Baylis and B.M. Brenner, Modulation by prostaglandin synthesis inhibitors of the action of exogenous angiotensin II on glomerular ultrafiltration in the rat, Circ. Res. 43:889–898 (1978).PubMedCrossRefGoogle Scholar
  11. 11.
    L.A. Scharschmidt, J.G. Douglas, M.J. Dunn, Angiotensin II and eicosanoids in the control of glomerular size in the rat and the human, Am. J. Physiol. 250:F348–356 (1986).PubMedGoogle Scholar
  12. 12.
    P. Mene’ and M.J. Dunn, Contractile effects of TxA2 and endoperoxide analogues on cultured rat glomerular mesangial cells, Am. J. Physiol. 251:F1029–F1035 (1986).Google Scholar
  13. 13.
    E.A. Lianos, G.A. Andres, M.J. Dunn, Glomerular prostaglandin and thromboxane synthesis in rat nephrotoxic serum nephritis, J. Clin. Invest. 72:1439–1448 (1983).PubMedCrossRefGoogle Scholar
  14. 14.
    G. Remuzzi, L. Imberti, M. Rossini, C. Morelli, C. Carminati, G.M. Cattaneo, T. Bertani, Increased glomerular thromboxane synthesis as a possible cause of proteinuria in experimental nephrosis, J. Clin. Invest. 75:94–101 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    M.L. Purkerson, J.H. Joist, J. Yates, A. Valdes, A. Morrison, S. Klahr, Inhibition of thromboxane synthesis ameliorates the progressive kidney disease of rats with subtotal renal ablation, Proc. Natl. Acad. Sci. USA 82:193–197 (1985).PubMedCrossRefGoogle Scholar
  16. 16.
    I. Ichikawa, M.L. Purkerson, J. Yates, S. Klahr, Dietary protein intake conditions the degree of renal vasoconstriction in acute renal failure caused by ureteral obstruction, Am. J. Physiol. 249: F54–61 (1985).PubMedGoogle Scholar
  17. 17.
    G. Ciabattoni, G.A. Cinotti, A. Pierucci, B.M. Simonetti, M. Manzi, F. Pugliese, P. Barsotti, G. Pecci, F. Taggi, C. Patrono, Effects of sulindac and ibuprofen in patients with chronic glomerular disease, N. Engl. J. Med. 310:279–283 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    M.J. Dunn and E.J. Zambraski, Renal effect of drugs that inhibit prostaglandin synthesis, Kidney Int. 18:609–622 (1980).PubMedCrossRefGoogle Scholar
  19. 19.
    J. Ditzel and M. Schwartz, Abnormally increased glomerular filtration rate in short-term insulin-treated diabetic subjects, Diabetes 16:264–267 (1967).PubMedGoogle Scholar
  20. 20.
    C.E. Mogensen, Kidney function and glomerular permeability to macromolecules in early juvenile diabetes, Scand. J. Clin. Lab. Invest. 28:79–90 (1971).PubMedCrossRefGoogle Scholar
  21. 21.
    J.S. Christiansen, J. Gammelgaard, M. Frandsen, H-H. Parving, Increased kidney size, glomerular filtration rate and renal plasma flow in short-term insulin-dependent diabetics, Diabetologia 20: 451–456 (1981).PubMedGoogle Scholar
  22. 22.
    T.H. Hostetter, J.L. Troy, B.M. Brenner, Glomerular hemodynamics in experimental diabetes mellitus, Kidney Int. 19:410–415 (1981).PubMedCrossRefGoogle Scholar
  23. 23.
    P.K. Jensen, J.S. Christiansen, K. Steven, H-H. Parving, Renal function in streptozotocin-diabetic rats, Diabetologia 21:409–414 (1981).PubMedCrossRefGoogle Scholar
  24. 24.
    T.H. Hostetter, J.L. Olson, H.G. Rennke, M.A. Venkatachalam, B.M. Brenner, Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation, Am. J. Physiol. 241:F85–F93 (1981).PubMedGoogle Scholar
  25. 25.
    R. Zatz, T.W. Meyer, H.G. Rennke, B.M. Brenner, Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy, Proc. Natl. Acad, Sci. USA 82:5963–5967 (1985).CrossRefGoogle Scholar
  26. 26.
    H.C. Knowles Jr., Magnitude of the renal failure problem in diabetic patients, Kidney Int. 4 (Suppl. 1): 52–57 (1974).Google Scholar
  27. 27.
    A.S. Krowlewski, J.H. Warram, A.R. Christlieb, E.J. Busick, C.R. Kahn, The changing natural history of nephropathy in type I diabetes , Am. J. Med. 78:785–794 (1985).CrossRefGoogle Scholar
  28. 28.
    R. Omachi, The pathogenesis and prevention of diabetic nephropathy, West. J. Med. 145:222–227 (1986).Google Scholar
  29. 29.
    C.E. Mogensen and M.J.F. Andersen, Increased kidney size and glomerular filtration rate in early juvenile diabetes, Diabetes 22:706–712 (1973).PubMedGoogle Scholar
  30. 30.
    C.E. Mogensen, Renal function changes in diabetes, Diabetes 25:872–879 (1976).PubMedGoogle Scholar
  31. 31.
    C.E. Mogensen and C.K. Christensen, Predicting diabetic nephropathy in insulin-dependent patients, N. Engl. J. Med. 311:89–93 (1984).PubMedCrossRefGoogle Scholar
  32. 32.
    J.S. Christiansen, J. Gammelgaard, B. Tronier, P.A. Swendsen, H-H. Parving, Kidney function and size before and during initial insulin treatment, Kidney Int. 21:683–688 (1982).PubMedCrossRefGoogle Scholar
  33. 33.
    C.E. Mogensen and M.J.F. Andersen, Increased kidney size and glomerular function rate in untreated juvenile diabetes: normalization by insulin-treatment, Diabetologia 11:221–224 (1975).PubMedCrossRefGoogle Scholar
  34. 34.
    M.J. Wiseman, A.J. Saunders, H. Keen, G.C. Viberti, Effect of blood glucose control on increased glomerular filtration rate and kidney size in insulin-dependent diabetes, N. Engl. J. Med. 312:617–621 (1985).PubMedCrossRefGoogle Scholar
  35. 35.
    T.H. Hostetter, T.W. Meyer, H.G. Rennke, B.M. Brenner, Influence of strict control of diabetes on intrarenal hemodynamics, Kidney Int. 23:215 (1983).Google Scholar
  36. 36.
    K. Seyer-Hansen, Renal hypertrophy in experimental diabetes mellitus, Kidney Int. 23:643–646 (1983).PubMedCrossRefGoogle Scholar
  37. 37.
    J.S. Christiansen, M. Frandsen, H-H. Parving, Effect of intravenous glucose infusion on renal function in normal man and in insulin-dependent diabetics, Diabetologia 21:368–373 (1981).PubMedCrossRefGoogle Scholar
  38. 38.
    J.S. Christiansen, M. Frandsen, H-H. Parving, The effect of intravenous insulin infusion on kidney function in insulin-dependent diabetes mellitus, Diabetologia 20:199–204 (1981).PubMedGoogle Scholar
  39. 39.
    J. Corvilain and M. Abramow, Some effects of human growth hormone on renal hemodynamics and on tubular phosphate transport in man, J. Clin. Invest. 41:1230–1235 (1962).PubMedCrossRefGoogle Scholar
  40. 40.
    H-H. Parving, J.S. Christiansen, I. Noer, B. Tronier, C.E. Mogensen, The effect of glucagon infusion on kidney function in short-term insulin-dependent juvenile diabetes, Diabetologia 19:350–354 (1980).PubMedCrossRefGoogle Scholar
  41. 41.
    S.L. Carney, N.L.M. Wong, J.H. Dirks, Acute effects of streptozotocin diabetes on rat renal function, J. Lab. Clin. Med. 93:950–961 (1979).PubMedGoogle Scholar
  42. 42.
    S.M. Mauer, M.W. Steffes, S. Azar, S.K. Sandberg, D.M. Brown, The effects of Goldblatt hypertension on development of glomerular lesions of diabetes mellitus in the rat, Diabetes 27:738–744 (1978).PubMedCrossRefGoogle Scholar
  43. 43.
    J. Berkman and H. Rifkin, Unilateral nodular diabetic glomerulosclerosis (Kimmelstiel-Wilson): report of a case, Metabolism 22: 715–722 (1973).PubMedCrossRefGoogle Scholar
  44. 44.
    R. Zatz, B.R. Dunn, T.W. Meyer, S. Anderson, H.G. Rennke, B.M. Brenner, Prevention of diabetic glomerulopathy by pharmacologic amelioration of glomerular capillary hypertension, J. Clin. Invest. 77:1925–1930 (1986).PubMedCrossRefGoogle Scholar
  45. 45.
    L. Axelrod and L. Levine, Plasma prostaglandin levels in rats with diabetes mellitus and diabetic ketoacidosis, Diabetes 31:994–1001 (1982).PubMedGoogle Scholar
  46. 46.
    P.V. Halushka, R.C. Rogers, C.B. Loadholt, H. Wohltman, R. Mayfield, S. McCoy, J.A. Colwell, Increased platelet prostaglandin and thromboxane synthesis in diabetes mellitus, Horm. Metab. Res. 11 (Suppl. 1):7–11 (1981).Google Scholar
  47. 47.
    J.M. Gerrard, M.J. Stuart, G.H.R. Rao, M.W. Steffes, S.M. Mauer, D.M. Brown, J.G. White, Alteration in the balance of prostaglandin and thromboxane synthesis in diabetic rats, J. Lab. Clin. Med. 95:950–958 (1980).PubMedGoogle Scholar
  48. 48.
    M.T.R. Subbiah and D. Deitemeyer, Altered synthesis of prostaglandins in platelet and aorta from spontaneously diabetic Wistar rats, Biochem. Med. 23:231–235 (1980).PubMedCrossRefGoogle Scholar
  49. 49.
    M.J. Stuart, H. Elrad, J.E. Graeber, D.O. Hakanson, S.G. Sunderji, M.K. Barvinchak, Increased synthesis of prostaglandin endoperoxides and platelet hyperfunction in infants of mothers with diabetes mellitus, J. Lab. Clin. Med. 94:12–17 (1979).PubMedGoogle Scholar
  50. 50.
    M. Johnson, H.E. Harrison, A.T. Raftery, J.B. Elder, Vascular prostacyclin may be reduced in diabetes in man, Lancet 1:325–326 (1979).PubMedCrossRefGoogle Scholar
  51. 51.
    K. Silberbauer, G. Schernthaner, H. Sinzinger, H. Piza-Katzer, M. Winter, Decreased vascular prostacyclin in juvenile-onset diabetes, N. Engl. J. Med. 300:366–367 (1979).PubMedGoogle Scholar
  52. 52.
    M.J. Stuart, S.G. Sunderji, J.B. Allen, Decreased prostacyclin production in the infant of the diabetic mother, J. Lab. Clin. Med. 98: 412–416 (1981).PubMedGoogle Scholar
  53. 53.
    C. Dadak, A. Kefalides, H. Sinzinger, G. Weaver, Reduced umbilical artery prostacyclin formation in complicated pregnancies, Am. J. Obstet. Gynecol. 144:792–795 (1982).PubMedGoogle Scholar
  54. 54.
    H.E. Harrison, A.H. Reece, M. Johnson, Decreased vascular prostacyclin in experimental diabetes, Life Sci. 23:351–356 (1978).PubMedCrossRefGoogle Scholar
  55. 55.
    S. P. Rogers and R.G. Larkins, Production of 6-oxo-prostaglandin F by rat aorta: influence of diabetes, insulin treatment, and caloric deprivation, Diabetes 30:935–939 (1981).PubMedGoogle Scholar
  56. 56.
    K. Silberbauer, P. Clopath, H. Sinzinger, G. Schernthaner, Effect of experimentally induced diabetes on swine vascular prostacyclin (PGI2) synthesis, Artery 8:30–36 (1980).PubMedGoogle Scholar
  57. 57.
    R.P. Robertson and M. Chen, A role for prostaglandin E in defective insulin secretion and carbohydrate intolerance in diabetes mellitus, J. Clin. Invest. 60:747–753 (1977).PubMedCrossRefGoogle Scholar
  58. 58.
    W.C. Lubawy and M. Valentovic, Streptozotocin-induced diabetes decreases formation of prostacyclin from arachidonic acid in intact rat lungs, Biochem. Med. 28:290–297 (1982).PubMedCrossRefGoogle Scholar
  59. 59.
    M.Y. Tsai, L.E. Schallinger, M.W. Josephson, D.M. Brown, Disturbance of pulmonary prostaglandin metabolism in fetuses of alloxan-diabetic rabbits, Biochim. Biophys. Acta. 712:395–399 (1982).PubMedCrossRefGoogle Scholar
  60. 60.
    I.S. Watts, J.T. Zakrzewski, Y.S. Bakhle, Altered prostaglandin synthesis in isolated lungs of rats with streptozotocin-induced diabetes, Thromb. Res. 28:333–342 (1982).PubMedCrossRefGoogle Scholar
  61. 61.
    P. Rosen and K. Schror, Increased prostacyclin release from perfused hearts of acutely diabetic rats, Diabetologia 18:391–394 (1980).PubMedGoogle Scholar
  62. 62.
    A. Kandil, S. Fouad, S. Samaan, Diabetes versus prostaglandin activity in the seminal vesicles, in: “Proc. of Vth International Conf. Prostaglandins.” Florence, p. 113 (1982).Google Scholar
  63. 63.
    J.R.S. Hoult and P.K. Moore, Prostaglandin synthesis and inactivation in kidneys and lungs of rats with experimental diabetes, Clin. Sci. 59:63–66 (1980).PubMedGoogle Scholar
  64. 64.
    H.E. Harrison, A.H. Reece, M. Johnson, Effect of insulin treatment on prostacyclin in experimental diabetes, Diabetologia 18:65–68 (1980).PubMedCrossRefGoogle Scholar
  65. 65.
    M. Schambelan, S. Blake, J. Sraer, M. Bens, M-P. Nivez, F. Wahbe, Increased prostaglandin production by glomeruli isolated from rats with streptozotocin-induced diabetes mellitus, J. Clin. Invest. 75:404–412 (1985).PubMedCrossRefGoogle Scholar
  66. 66.
    J.E. Kreisberg and P.Y. Patel, The effects of insulin, glucose and diabetes on prostaglandin production by rat kidney glomeruli and cultured mesangial cells, Prostaglandins Leukotrienes Med. 11:431–442 (1983).CrossRefGoogle Scholar
  67. 67.
    D.M. Brown, J.M. Gerrard, J. Peller, G.H.R. Rao, J.B. White, Glomerular prostaglandin metabolism in diabetic rats, Diabetes 29 (Suppl): 55 (1980).Google Scholar
  68. 68.
    A. Chaudhari and M.A. Kirschenbaum, Effect of experimental diabetes mellitus (DM) on eicosanoid biosynthesis in isolated rat glomeruli, Kidney Int. 25:326 (1984).Google Scholar
  69. 69.
    P.A. Craven, M.A. Gaines, F.R. DeRubertis, Sequential alterations in glomerular prostaglandin and thromboxane synthesis in diabetic rats: relationship to the hyperfiltration of early diabetes, Metabolism 36:95–103 (1987).PubMedCrossRefGoogle Scholar
  70. 70.
    D. Moel, R.L. Safirstein, R.C. McEvoy, W. Hsueh, The effect of aspirin on experimental diabetic nephropathy, J. Lab. Clin. Med. 110:300–307 (1987).PubMedGoogle Scholar
  71. 71.
    S.P. Rogers and R.G. Larkins, Production of 6-oxo-prostaglandin F and prostaglandin by isolated glomeruli from normal and diabetic rats, Br. Med. J. 284:1215–1217 (1982).CrossRefGoogle Scholar
  72. 72.
    S. Sandler and A. Andersson, The partial protective effect of the hydroxyl radical scavenger dimethyl urea on streptozotocin-induced diabetes in the mouse in vivo and in vitro, Diabetologia 23:374–378 (1982).PubMedCrossRefGoogle Scholar
  73. 73.
    H. Kromann, M. Christy, A. Lernmark, M. Nedergaard, J. Nerup, The low dose streptozotocin murine model of type 1 (insulin-dependent) diabetes mellitus: studies in vivo and in vitro of the modulating effect of sex hormones, Diabetologia 22:194–198 (1982).PubMedCrossRefGoogle Scholar
  74. 74.
    J. Tannenbaum, B.J. Sweetman, A.S. Nies, K. Aulsebrook, J. A. Oates, The effect of glucose on the synthesis of prostaglandins by the renal papilla of the rat in vitro. Prostaglandins 17:337–350 (1979).PubMedGoogle Scholar
  75. 75.
    J.S. Tannenbaum, Prostaglandins: a study of their effects on the kidney and factors controlling their release, Ph. D. Thesis, Washington University School of Medicine, St. Louis, MO. (1980).Google Scholar
  76. 76.
    J-D. Sraer, L. Moulonguet-Doleris, F. Delarue, J. Sraer, R. Ardaillou, Prostaglandin synthesis by glomeruli isolated from rats with glyceroL-induced acute renal failure, Circ. Res. 49:775–783 (1981).PubMedCrossRefGoogle Scholar
  77. 77.
    J. Sraer, W. Siess, L. Moulonguet-Doleris, J-P. Oudinet, F. Dray, R. Ardaillou, In vitro prostaglandin synthesis by various rat renal preparations, Biochim. Biophys. Acta. 710:45–52 (1982).PubMedCrossRefGoogle Scholar
  78. 78.
    J. Sraer, M. Rigaud, M. Bens, H. Rabinovitch, and R. Ardaillou, Metabolism of arachidonic acid via the lipoxygenase pathway in human and murine glomeruli, J. Biol. Chem. 258:4325–4330 (1983).PubMedGoogle Scholar
  79. 79.
    P. Chaumet-Riffaud, J-P. Oudinet, J. Sraer, C. Lajotte, R. Ardaillou, Altered PGE2 and PGF production by glomeruli and papilla of sodium-depleted and sodium-loaded rats, Am. J. Physiol. 241:F517–524 (1981).PubMedGoogle Scholar
  80. 80.
    J.Y. Jeremy, D.P. Mikhailidis, P. Dandona, Simulating the diabetic environment modifies in vitro prostacyclin synthesis, Diabetes 32: 217–221 (1983).PubMedCrossRefGoogle Scholar
  81. 81.
    R.C. Paton, R. Guillot, P.H. Passa, J. Canivet, Prostacyclin production by human endothelial cells cultured in diabetic serum, Diabete. Metab. 8:323–328 (1982).PubMedGoogle Scholar
  82. 82.
    P.K. Jensen, K. Steven, H. Blaehr, J.S. Christiansen, H-H. Parving, Effects of indomethacin on glomerular hemodynamics in experimental diabetes, Kidney Int. 29:490–495 (1986).PubMedCrossRefGoogle Scholar
  83. 83.
    E. Estamajes, M.R. Fernandez, I. Halperin, J. Camps, J. Gaya, V. Arroyo, F. Rivera, D. Figuerola, Renal hemodynamic abnormalities in patients with short term insulin-dependent diabetes mellitus: role of renal prostaglandins, J. Clin. Endocrinol. Metab. 60:1231–1236 (1986).Google Scholar
  84. 84.
    N. Bank, M.A.G. Lahorra, H.S. Aynedjian, D. Schlondorff, Role of vasoactive hormones in hyperfiltration of diabetes, Kidney Int. 31:259 (1987).CrossRefGoogle Scholar
  85. 85.
    N.S. Bricker, S. Klahr, R.E. Rieselbach, The functional adaptation of the diseased kidney--I. Glomerular filtration rate, J. Clin. Invest. 43:1915–1921 (1964).PubMedCrossRefGoogle Scholar
  86. 86.
    A.B. Morrison and R.M. Howard, The functional capacity of the hypertrophied nephrons--Effect of partial nephrectomy on the clearance of inulin and PAH in the rat, J. Exp. Med. 123:829–844 (1966).PubMedCrossRefGoogle Scholar
  87. 87.
    W.M. Deen, D.R. Maddox, C.R. Robertson, B.M. Brenner, Dynamics of glomerular hyperfiltration in the rat--VII. Response to reduced renal mass, Am. J. Physiol. 227:556–562 (1974).PubMedGoogle Scholar
  88. 88.
    A. Chanutin and E. Ferris, Experimental renal insufficiency produced by partial nephrectomy: I. Control diet, Arch. Intern. Med. 49:767–787 (1932).CrossRefGoogle Scholar
  89. 89.
    T. Shimamura and A.B. Morrison, A progressive glomerulosclerosis occurring in partial five-sixths nephrectomized rats, Am. J. Pathol. 79:95–101 (1975).PubMedGoogle Scholar
  90. 90.
    J.L. Olson, T.H. Hostetter, H.G. Rennke, B.M. Brenner, M.A. Venkatachalam, Altered glomerular permeability and progressive sclerosis following ablation of renal mass, Kidney Int. 22:112–126 (1982).PubMedCrossRefGoogle Scholar
  91. 91.
    Y. Yoshida, A. Fogo, H. Shinaga, A. Glick, I. Ichikawa, Serial micropuncture analysis of single nephron function in subtotal renal ablation, Kidney Int. 33:855–867 (1988).PubMedCrossRefGoogle Scholar
  92. 92.
    R.A.K. Stahl, S. Kudelka, M. Paravicini, P. Schoolmeyer, Prostaglandin and thromboxane formation in glomeruli from rats with reduced renal mass, Nephron 42:252–257 (1986).PubMedCrossRefGoogle Scholar
  93. 93.
    K.A. Nath, D.H. Chmilewski, T.H. Hostetter, Regulatory role of prostanoids in glomerular microcirculation of remnant nephrons, Am. J. Physiol. 21:F829–F837 (1987).Google Scholar
  94. 94.
    S. Klahr, J. Buerkert, M.L. Purkerson, Role of dietary factors in the progression of chronic renal disease, Kidney Int. 24:579–587 (1983).PubMedCrossRefGoogle Scholar
  95. 95.
    T. Addis, “Glomerular Nephritis: Diagnosis and Treatment,” Macmillan, New York, (1948).Google Scholar
  96. 96.
    I. Ichikawa, M.L. Purkerson, S. Klahr, J.L. Troy, M. Martinez-Maldanado, B.M. Brenner, Mechanism of reduced glomerular filtration rate in chronic malnutrition, J. Clin. Invest. 65:982–988 (1980).PubMedCrossRefGoogle Scholar
  97. 97.
    T.N. Pullman, A.S. Alving, R.J. Dern, M. Landowne, The influence of dietary protein on specific renal function in normal man, J. Lab. Clin. Med. 44:320–332 (1954).PubMedGoogle Scholar
  98. 98.
    J.P. Bosch, S. Lew, S. Glabman, A. Lauer, Renal hemodynamic changes in humans : response to protein loading in normal and diseased kidneys, Am. J. Med. 81:809–815 (1986).PubMedCrossRefGoogle Scholar
  99. 99.
    R.F. Pitts, The effect of infusing glycine and of varying the dietary protein intake on renal hemodynamics in the dog, Am. J. Physiol. 142:355–365 (1944).Google Scholar
  100. 100.
    G. Maschio, L. Oldrizzi, N. Tessitore, A. D’Angelo, E. Valvo, A. Lupo, C. Loschiavo, A. Fabris, L. Gammaro, C. Rugió, G. Panzetta, Effects of dietary protein and phosphorus restriction on the progression of early renal failure, Kidney Int. 22:371–376 (1982).PubMedCrossRefGoogle Scholar
  101. 101.
    W.E. Mitch, Conservative management of chronic renal failure, in: “Contemporary Issues In Nephrology--Chronic Renal Failure,” Vol. 7, B.M. Brenner and J.H. Stein, Eds., Churchhill-Livingston, New York, pp. 116–152, (1981).Google Scholar
  102. 102.
    F.N. Hutchinson, B.R. Don, G.A. Kaysen, S. Blake, M. Schambelan, Dietary protein intake modulates glomerular eicosanoid production in nephrotic rats, Adv. in Prostaglandins Thromboxane and Leukotriene Res. 17:725–728 (1987).Google Scholar
  103. 103.
    W.G. Couser, D.R. Steinmuller, M.M. Stilmant, D.J. Salant, L.J. Lowenstein, Experimental glomerulonephritis in the isolated perfused rat kidney, J. Clin. Invest. 62:1275–1287 (1978).PubMedCrossRefGoogle Scholar
  104. 104.
    R.A.K. Stahl, S. Kudelka, U. Helmchen, High protein intake stimulates glomerular prostaglandin formation in remnant kidneys, Am. J. Physiol. 252:F1088-F1094 (1987).PubMedGoogle Scholar
  105. 105.
    B.R. Don, S. Blake, G.A. Kaysen, M. Schambelan, Dietary protein modulates glomerular eicosanoid production in rats with experimental renal disease and in normal animals, Kidney Int. 31:267 (1987).Google Scholar
  106. 106.
    L.M. Ruilope, J. Rodicio, R.G. Robles, J. Sancho, B. Miranda, J.P. Granger, J.C. Romero, Influence of a low sodium diet on the renal response to amino acid infusion in humans, Kidney Int. 31:992–999 (1987).PubMedCrossRefGoogle Scholar
  107. 107.
    M.E. Rosenberg, B.L. Thomas, J.E. Swanson, T.H. Hostetter, Hormonal and glomerular responses to dietary protein intake in human renal disease, Kidney Int. 31:215 (1987).Google Scholar
  108. 108.
    R. Hirschberg and J.D. Kopple, Indomethacin blocks the arginine induced rise of RPF and GFR in man, Kidney Int. 31:201 (1987).Google Scholar
  109. 109.
    M. Lawlor, W. Lieberthal, R. Perrone, The increase in GFR after a meat meal is mediated by prostaglandins, Kidney Int. 31:208 (1987).Google Scholar
  110. 110.
    M.S. Palier and T.H. Hostetter, Dietary protein increases plasma renin and reduces pressor reactivity to angiotensin II, Am. J. Physiol. 252:F34-F39 (1986).Google Scholar
  111. 111.
    M.M. Levine, M.A. Kirschenbaum, A. Chaudhari, M. Wong, N.S. Bricker, Effect of protein on glomerular filtration rate and prostanoid synthesis in normal and uremic rats, Am. J. Physiol. 251:F635–F641 (1986).PubMedGoogle Scholar
  112. 112.
    A. Benigni, C. Zoja, A. Remuzzi, S. Orisio, A. Piccinelli, G. Remuzzi, Role of renal prostaglandins in normal and nephrotic rats with diet-induced hyperfiltration, J. Lab. Clin. Med. 108:230–240 (1986).PubMedGoogle Scholar
  113. 113.
    S. Anderson, T.W. Meyer, H.G. Rennke, B.M. Brenner, Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass, J. Clin. Invest. 76:612–619 (1985).PubMedCrossRefGoogle Scholar
  114. 114.
    F.N. Hutchison, M. Schambelan, G.A. Kaysen, Modulation of albuminuria by dietary protein and converting enzyme inhibition, Am. J. Physiol, in press.Google Scholar
  115. 115.
    Y. Taguma, Y. Kitamoto, G. Futake, H. Ueda, H. Momma, M. Ishizaki, H. Takahashi, H. Sakino, Y. Sasaki, Effect of Captopril on heavy proteinuria in azotemic diabetics, N. Engl. J. Med. 313:1617–1620 (1985).PubMedCrossRefGoogle Scholar
  116. 116.
    S. Bjorck, G. Nyberg, H. Mulec, G. Granerus, H. Herlitz, M. Aurell, Beneficial effects of angiotensin converting enzyme inhibition on renal function in patients with diabetic nephropathy, Br. Med. J. 293:471–474 (1986).CrossRefGoogle Scholar
  117. 117.
    S. Anderson, H.G. Rennke, B.M. Brenner, Therapeutic advantage of converting enzyme inhibitors in arresting progressive renal disease associated with systemic hypertension in the rat, J. Clin. Invest. 77:1993–2000 (1986).PubMedCrossRefGoogle Scholar
  118. 118.
    I. Ichikawa and B.M. Brenner, Glomerular action of angiotensin II, Am. J. Med. 76:43–49 (1984).PubMedCrossRefGoogle Scholar
  119. 119.
    A.Y.M. Chan, M.L. Cheng, and B.D. Myers, Functional response of diseased glomeruli to a large protein meal, Kidney Int. 31:381 (1987).Google Scholar
  120. 120.
    R.C. Blantz, K.S. Können, B.J. Tucker, Angiotensin II effect upon the glomerular microcirculation and ultrafiltration, J. Clin. Invest. 57:419–434 (1976).PubMedCrossRefGoogle Scholar
  121. 121.
    W.L. Henrich, Role of prostaglandins in renin secretion, Kidney Int. 19:822–830 (1981).PubMedCrossRefGoogle Scholar
  122. 122.
    J.G. Gerber, R.D. Olson, A.S. Nies, Interrelationship between prostaglandins and renin release, Kidney Int. 19:816–821 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Morris Schambelan
    • 1
    • 2
    • 3
    • 4
  • Burl R. Don
    • 1
    • 2
    • 3
    • 4
  • George A. Kaysen
    • 1
    • 2
    • 3
    • 4
  • Susan Blake
    • 1
    • 2
    • 3
    • 4
  1. 1.Medical ServiceSan Francisco General Hospital Medical CenterSan FranciscoUSA
  2. 2.Department of MedicineUniversity of CaliforniaSan FranciscoUSA
  3. 3.Department of MedicineMartinez Veterans Administration Medical CenterMartinezUSA
  4. 4.Department of Internal MedicineUniversity of CaliforniaDavisUSA

Personalised recommendations