Advertisement

Eicosanoids: Role in Experimental Renal Disease

  • Saulo Klahr
  • Mabel L. Purkerson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 259)

Abstract

Endogenous prostaglandin biosynthesis modulates such renal functions as regional blood flow (1), salt and water transport (2), renin secretion (3,4) and neurotransmitter release (5). More recently, the vasoconstrictor thromboxane A2, which normally is quantitatively a minor product of arachidonic acid metabolism in the kidney under resting or basal conditions, has been shown to be increased in several models of renal injury and may be, in part, responsible for some of the pathophysiological derangements (6–9). Two models, ureteral obstruction and subtotal renal ablation, in which thromboxane seems to play a pathogenetic role, are described in more detail in this chapter. In addition, the role of prostaglandins, thromboxane and dietary fatty acids on kidney function and structure in several immunological models of renal disease and hypertension are discussed.

Keywords

Lupus Nephritis Unilateral Ureteral Obstruction Renal Plasma Flow Ureteral Obstruction Linoleic Acid Diet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Herbaczynska-Cedro and J.R. Vane, Contribution of intrarenal generation of prostaglandins to autoregulation of renal blood flow in the dog, Circ. Res. 23:428–436 (1973).CrossRefGoogle Scholar
  2. 2.
    J.J. Grantham and J. Orloff, Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3’-5’ monophosphate and theophylline, J. Clin. Invest. 47: 1154–1161 (1968).PubMedCrossRefGoogle Scholar
  3. 3.
    C. Larsson, P. Weber, E. Anggard, Arachidonic acid increases and indomethacin decreases plasma renin activity in the rabbit, Eur. J. Pharmacol. 28:391–394 (1974).PubMedCrossRefGoogle Scholar
  4. 4.
    A.J. Vander, Direct effects of prostaglandin on renal function and renin release in anesthetized dogs, Am. J. Physiol. 214:218–221 (1968).PubMedGoogle Scholar
  5. 5.
    K.V. Malik and J.C. McGiff, Modulation by prostaglandins of adrenergic transmission in the isolated perfused rabbit and rat kidney, Circ. Res. 36:599–609 (1975).PubMedCrossRefGoogle Scholar
  6. 6.
    A.R. Morrison, K. Nishikawa, P. Needleman, Thromboxane A2 biosynthesis in the ureter obstructed isolated perfused kidney of the rabbit, J. Pharmacol. Exp. Ther. 205:1–8 (1978).PubMedGoogle Scholar
  7. 7.
    A.R. Morrison, F. Thornton, A. Blumberg, E. Darracott-Vaughn, Thromboxane A2 is the major arachidonic acid metabolite of human cortical hydronephrotic tissue, Prostaglandins 21:471–481 (1981).PubMedGoogle Scholar
  8. 8.
    R. Zipser, S. Myer, P. Needleman, Exaggerated prostaglandin and thromboxane synthesis in the rabbit with renal vein constriction, Circ. Res. 47:231–237 (1980).PubMedCrossRefGoogle Scholar
  9. 9.
    M.L. Purkerson, J.H. Joist, J. Yates, A. Valdes, A. Morrison, S. Klahr, Inhibition of thromboxane synthesis ameliorates the progressive kidney disease of rats with subtotal renal ablation, Proc. Natl. Acad. Sci. 82:193–197 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    K. Nishikawa, A.R. Morrison, P. Needleman, Exaggerated prostaglandin biosynthesis and its influence on renal resistance in the isolated hydronephrotic rabbit kidney, J. Clin. Invest. 59:1143–1150 (1977).PubMedCrossRefGoogle Scholar
  11. 11.
    T.E. Moody, E.D. Vaughn Jr., J.Y. Gillenwater, Relationship between renal blood flow and ureteral pressure during eighteen hours of total unilateral occlusion. Implications for changing sites of renal resistance, Invest. Urol. 13:246–251 (1975).PubMedGoogle Scholar
  12. 12.
    S. Klahr, J. Buerkert, A. Morrison, Urinary tract obstruction, in: “The Kidney,” 3rd edition, Brenner B.M. and Rector F.C. Jr., eds., W.B. Saunders, Philadelphia, pp. 1443–1490 (1986).Google Scholar
  13. 13.
    T.E. Moody, E.D. Vaughn Jr., A.T. Wyler, The role of intrarenal angiotensin II in the hemodynamic response to unilateral obstructive uro-pathy, Invest. Urol. 14:390–397 (1977).PubMedGoogle Scholar
  14. 14.
    A.R. Morrison, K. Nishikawa, P. Needleman, Unmasking of thromboxane A2 synthesis by ureter obstruction in the rabbit kidney, Nature 267:259–260 (1977).PubMedCrossRefGoogle Scholar
  15. 15.
    A.R. Morrison and P. Needleman, Biochemistry and pharmacology of renal prostaglandins: Hormonal function and the kidney, in: “Contemporary Issues in Nephrology,” B.M. Brenner and J.H. Stein, eds., Churchill Livingstone, New York, pp. 68–88 (1979).Google Scholar
  16. 16.
    T. Hiyamoto, K. Taniguchi, T. Tanonchi, F. Hirata, Selective inhibitor of thromboxane synthetase. Pyridine and its derivatives, in: “Advances in Prostaglandin Research,” Vol. 6, B. Samuelsson, P. Ramwell, R. Paoletti, eds., Raven Press, New York, pp. 443–445 (1980).Google Scholar
  17. 17.
    A. Kawasaki and P. Needleman, Contribution of thromboxane to renal resistance changes in the isolated perfused hydronephrotic rabbit kidney, Circ. Res. 50:486–490 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    R.B. Nagle, R.E. Bulger, R.E. Culter, H.R. Jervis, E.P. Benditt, Unilateral obstructive nephropathy in the rabbit. I. Early morphologic, physiologic and histochemical changes, Lab. Invest. 28:456–467 (1973).PubMedGoogle Scholar
  19. 19.
    R.B. Nagle, M.E. Johnson, H.R. Jervis, Proliferation of renal interstitial cells following injury induced by ureteral obstruction, Lab. Invest. 35:18–22 (1976).PubMedGoogle Scholar
  20. 20.
    T. Okegawa, P.E. Jonas, K. DeSchryver, A. Kawasaki, P. Needleman, Metabolic and cellular alterations underlying the exaggerated renal prostaglandin and thromboxane synthesis in ureter obstruction in rabbits, J. Clin. Invest. 71:81–90 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    S.J. Leibovitch and R. Ross, A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vitro, Am. J. Pathol. 84: 501–513 (1976).Google Scholar
  22. 22.
    J.B. Lefkowith, T. Okegawa, K. DeSchryver-Kecskemetei, P. Needleman, Macrophage-dependent arachidonate metabolism in hydronephrosis, Kidney Int. 26:10–17 (1984).PubMedCrossRefGoogle Scholar
  23. 23.
    S.M. Weisman, D. Felser, E.D. Vaughan Jr., Platelet-activating factor is a potent stimulus for renal prostaglandin synthesis: possible significance in unilateral ureteral obstruction, J. Pharmacol. Exp. Ther. 235:10–15 (1985).PubMedGoogle Scholar
  24. 24.
    J. Buerkert, M. Head, S. Klahr, Effects of acute bilateral ureteral obstruction on deep nephron and terminal collecting duct function in the young rat, J. Clin. Invest. 59:1055–1065 (1977).PubMedCrossRefGoogle Scholar
  25. 25.
    W.E. Yarger, D.D. Schocker, R.H. Harris, Obstructive nephropathy in the rat: possible roles for the renin-angiotensin system, prostaglandins and thromboxanes in post-obstructive renal function, J. Clin. Invest. 65:400–412 (1980).PubMedCrossRefGoogle Scholar
  26. 26.
    I. Ichikawa, M.L. Purkerson, J. Yates, S. Klahr, Dietary protein intake conditions the degree of renal vasoconstriction in acute renal failure caused by ureteral obstruction, Am. J. Physiol. 249:F54–F61 (1985).PubMedGoogle Scholar
  27. 27.
    L.A. Scharschmidt, J.G. Douglas, M.J. Dunn, Angiotensin II and eicosanoids in the control of glomerular size in the rat and human, Am. J. Phvsiol. 250:F348-F356 (1986).Google Scholar
  28. 28.
    A. Chanutin and E. Ferris, Experimental renal insufficiency produced by partial nephrectomy; control diet, Arch. Intern. Med. 49:767–787 (1932).CrossRefGoogle Scholar
  29. 29.
    T. Shimamura and A.B. Morrison, A progressive glomerulosclerosis occurring in partial five-sixths nephrectomized rats, Am. J. Pathol. 79: 95–106 (1975).PubMedGoogle Scholar
  30. 30.
    M.L. Purkerson, P.E. Hoffsten, S. Klahr, Pathogenesis of the glomerulopathy associated with renal infarction in rats, Kidney Int. 9:407–417 (1976).PubMedCrossRefGoogle Scholar
  31. 31.
    M.L. Purkerson, J.R. Joist, D. Greenberg, D. Kay, P.E. Hoffsten, S. Klahr, Inhibition by anticoagulant drugs of the progressive hypertension and uremia associated with renal infarction in rats, Thromb. Res. 26:227–240 (1982).PubMedCrossRefGoogle Scholar
  32. 32.
    U.O. Barcelli, M. Weiss, V.E. Pollak, Effects of a dietary prostaglandin precursor on the progression of experimentally-induced chronic renal failure, J. Lab. Clin. Med. 100:786–797 (1982).PubMedGoogle Scholar
  33. 33.
    M. Heifets, J.J. Morrissey, M.L. Purkerson, A.R. Morrison, S. Klahr, Effect of dietary lipids on renal function in rats with subtotal nephrectomy, Kidney Int.. in press.Google Scholar
  34. 34.
    Y. Izumi, T.W. Weiner, R. Franco-Saenz, P.J. Mulrow, Effects of dietary linoleic acid on blood pressure and renal function in subtotally nephrectomized rats (42404), Proc. Soc. Expl. Biol. Med. 183:193–198 (1986).Google Scholar
  35. 35.
    R. Hirschberg, D. Herrath, H. Klaus, W. Hofer, C. Schuster, H. Rottka, K. Schaefer, Effect of diets containing varying concentrations of essential fatty acids and triglycerides on renal function in uremic rats and NZB/NZW F1 mice, Nephron 38:233–237 (1984).PubMedCrossRefGoogle Scholar
  36. 36.
    L. McGregor, R. Morazain, S. Renaud, Effect of dietary linoleic acid on platelet function in the rat, Thromb. Res. 20:499–507 (1980).PubMedCrossRefGoogle Scholar
  37. 37.
    R.B. Zurier, I. Damjanov, D.M. Sayadoff, N.B. Rothfield, Prostaglandin E1 treatment of NZB/NZW F1 hybrid mice. II. Prevention of glomerulonephritis, Arthritis Rheum. 20:1449–1456 (1977).PubMedCrossRefGoogle Scholar
  38. 38.
    E.R. Hurd, J.M. Johnston, J.R. Okita, P.C. MacDonald, M. Ziff, J.N. Gilliam, Prevention of glomerulonephritis and prolonged survival in New Zealand Black/New Zealand White F1 hybrid mice fed an essential fatty acid-deficient diet, J. Clin. Invest. 67:476–485 (1981).PubMedCrossRefGoogle Scholar
  39. 39.
    J.B. Howie, B.J. Helyer, T.P. Casey, I. Aarons, Renal disease in autoimmune strains of mice, in: Proc. Third Int. Cong. Nephr.. Basel, S. Karger 2:150–163 (1967).Google Scholar
  40. 40.
    E.L. Dubois, R.E. Horowitz, H.B. Demopoulos, R. Teplitz, NZB/NZW mice as a model of systemic lupus erythematosus, J. Am. Med. Assoc. 195: 285–289 (1966).CrossRefGoogle Scholar
  41. 41.
    E.R. Hurd and M. Ziff, Quantitative studies of immunoglobulin deposition in the kidney, glomerular cell proliferation and glomerulosclerosis in NZB/NZW F1 hybrid mice, Clin. Exp. Immunol. 26:261–268 (1976).Google Scholar
  42. 42.
    J.R. Vane, Prostaglandins as mediators of inflammation, in: “Advances in Prostaglandin and Thromboxane Research,” Samuelsson, B. and Paoletti, R., Raven Press, New York 2:791–801 (1976).Google Scholar
  43. 43.
    E.J. Goetzl, Mediators of immediate hypersensitivity derived from arachidonic acid, N. Engl. J. Med. 303:822–825 (1980).PubMedCrossRefGoogle Scholar
  44. 44.
    J.D. Prickett, D.R. Robinson, A.D. Steinberg, Dietary enrichment with the polyunsaturated fatty acid eicosapentaenoic acid prevents proteinuria and prolongs survival in NZB x NZW F1 mice, J. Clin. Invest. 68:556–559 (1981).PubMedCrossRefGoogle Scholar
  45. 45.
    V.E. Kelley, A. Ferretti, S. Izui, T.B. Strom, A fish oil diet rich in eicosapentaenoic acid reduces cyclooxygenase metabolites and suppresses lupus in MRL-1pr mice, J. Immunol. 134:1914–1919 (1985).PubMedGoogle Scholar
  46. 46.
    H.B. Steinhauer, S. Batsford, P. Schollmeyer, R. Kluthe, Studies on thromboxane B2 production in the course of murine autoimmune disease: Inhibition by oral histidine and zinc supplementation, Clin. Nephrol. 24:63–68 (1985).PubMedGoogle Scholar
  47. 47.
    V.E. Kelley, S. Sneve, S. Musinski, Increased renal thromboxane production in murine lupus nephritis. J. Clin. Invest. 77:252–259 (1986).PubMedCrossRefGoogle Scholar
  48. 48.
    V.E. Kelley, A. Winkelstein, S. Izui, Effect of prostaglandin E on immune complex nephritis in NZB/W mice, Lab. Invest. 41:531–537 (1979).PubMedGoogle Scholar
  49. 49.
    K.R. McLeish, A.F. Gohara, W.T. Gunning, III, D. Senitzer, Prostaglandin E1 therapy of murine chronic serum sickness, J. Lab. Clin. Med. 96: 470–479 (1980).PubMedGoogle Scholar
  50. 50.
    R.A.K. Stahl, S. Adler, P.J. Baker, Y.P. Chen, P.M. Pritzl, W.G. Couser, Enhanced glomerular prostaglandin formation in experimental membranous nephropathy, Kidney Int. 31:1126–1131 (1987).PubMedCrossRefGoogle Scholar
  51. 51.
    J.E. Stork and M.J. Dunn, Hemodynamic roles of thromboxane A2 and prostaglandin E2 in glomerulonephritis, J. Pharm. Exp. Ther. 233:672–678 (1985).Google Scholar
  52. 52.
    E.A. Lianos, G.A. Andres, M.J. Dunn, Glomerular prostaglandin and thromboxane synthesis in rat nephrotoxic serum nephritis. Effects on renal hemodynamics, J. Clin. Invest. 72:1439–1448 (1983).PubMedCrossRefGoogle Scholar
  53. 53.
    E.A. Lianos, M.A. Rahman, M.J. Dunn, Glomerular arachidonate lipoxygenation in rat nephrotoxic serum nephritis, J. Clin. Invest. 76:1355–1359 (1985).PubMedCrossRefGoogle Scholar
  54. 54.
    C.H. Dubois, J.B. Foidart, C.A. Dechene, P.R. Mahieu, Effects of a diet deficient in essential fatty acids on the glomerular hypercellularity occurring in the course of nephrotoxic serum nephritis in rats, Kidney Int. 21 (suppl.ll):S-39–S-45 (1982).Google Scholar
  55. 55.
    V.E. Kelley and A. Winkelstein, Effect of prostaglandin E1 treatment on murine acute immune-complex glomerulonephritis, Clin. Immunol. Immunolpathol. 16:316–323 (1980).CrossRefGoogle Scholar
  56. 56.
    K.R. McLeish, A.F. Gohara, L.J. Johnson, D.L. Sustarsic, Alteration in immune-complex glomerulonephritis by arachidonic acid, Prostaglandins 23:383–389 (1982).PubMedGoogle Scholar
  57. 57.
    V. Kher, U. Barcelli, M. Weiss, V.E. Pollak, Effects of dietary linoleic acid enrichment on induction of immune complex nephritis in mice, Nephron 39:261–266 (1985).PubMedCrossRefGoogle Scholar
  58. 58.
    H. Saito, T. Ideura, J. Takeuchi, Effects of a selective thromboxane A2 synthetase on immune complex glomerulonephritis, Nephron 36: 38–45 (1984).PubMedCrossRefGoogle Scholar
  59. 59.
    G. Remuzzi, L. Imberti, M. Rossini, C. Morelli, C. Carminati, G.M. Cattaneo, T. Bertani, Increased glomerular thromboxane synthesis as a possible cause of proteinuria in experimental nephrosis, J. Clin. Invest. 75:94–101 (1985).PubMedCrossRefGoogle Scholar
  60. 60.
    C.J. Kelly, R.B. Zurier, K.A. Krakauer, N. Blanchard, E.G. Nielson, Prostaglandin E1 inhibits effector T cell induction and tissue damage in experimental murine interstitial nephritis. J. Clin. Invest. 79:782–789 (1987).PubMedCrossRefGoogle Scholar
  61. 61.
    O. Abehsura-Amar, C. Damars, M. Parait, L. Chedid, Strain dependence of muramyl dipeptide-induced LAF (IL-1) release by murine-adherent peritoneal cells, J. Immunol. 134:365–368 (1985).Google Scholar
  62. 62.
    S.L. Kunkel, S.W. Chensue, S.H. Phan, Prostaglandins as endogenous mediators of interleukin I production, J. Immunol. 136:186–192 (1986).PubMedGoogle Scholar
  63. 63.
    G.D. Fink and M.J. Brody, Renal vascular resistance and reactivity in the spontaneously hypertensive rat, Am. J. Physiol. 237:F128-F132 (1979).PubMedGoogle Scholar
  64. 64.
    C. Limas and C.J. Limas, Enhanced renomedullary prostaglandin synthesis in spontaneously hypertensive rats: Role of a phospholipase A2, Am. J. Phvsiol. 236:H65-H72 (1979).Google Scholar
  65. 65.
    C.R. Pace-Asciak, Decreased renal prostaglandin catabolism precedes onset of hypertension in the developing spontaneously hypertensive rat, Nature 263:510–512 (1976).PubMedCrossRefGoogle Scholar
  66. 66.
    C. J. Limas and C. Limas, Prostaglandin metabolism in the kidneys of spontaneously hypertensive rats, Am. J. Physiol. 233:H87-H92 (1977).PubMedGoogle Scholar
  67. 67.
    M. Kpnieczkowski, M.J. Dunn, J.E. Stork, A. Hassid, Glomerular synthesis of prostaglandins and thromboxane in spontaneously hypertensive rats, Hypertension 5:446–452 (1983).CrossRefGoogle Scholar
  68. 68.
    C.R. Pace-Asciak, M.C. Carrara, G. Rangaraj , K.C. Nicolaou, Enhanced formation of PGI2, a potent hypotensive substance, by aortic rings and homogenates of the Spontaneously hypertensive rats, Prostaglandins 15:1005–1012 (1978).PubMedGoogle Scholar
  69. 69.
    J.V. Levy, Changes in systolic arterial blood pressure in normal and spontaneously hypertensive rats produced by acute administration of inhibitors of prostaglandin biosynthesis, Prostaglandins 13:153–160 (1977).PubMedGoogle Scholar
  70. 70.
    N. Farman and J.P. Bonvalet, Abnormal relationship between sodium excretion and hypertension in spontaneously hypertensive rats, Pflugers Arch. 354:39–53 (1975).PubMedCrossRefGoogle Scholar
  71. 71.
    R. Dietz, A. Schomig, H. Haebara, J.F.E. Mann, W. Rascher, J.B. Lüth, N. Grünherz, F. Gross, Studies on the pathogenesis of spontaneous hypertension in rats, Circ. Res. 43 (suppl. I): I98–I111 (1978).Google Scholar
  72. 72.
    R.L. Kline, P.M. Kelton, P.F. Mercer, Effect of renal denervation on the development of hypertension in spontaneously hypertensive rats, Can. J. Phvsiol. Pharmacol. 56:818–822 (1978).CrossRefGoogle Scholar
  73. 73.
    S.R. Winternitz, R.E. Katholi, S. Oparil, Role of the renal sympathetic nerves in the development and maintenance of hypertension in the spontaneously hypertensive rat, J. Clin. Invest. 66:971–978 (1980).PubMedCrossRefGoogle Scholar
  74. 74.
    Y. Shibouta, Y. Inada, Z. Terashita, K. Nishikawa, S. Kikuchi, K. Shimamoto, Angiotensin-II-stimulated release of thromboxane A2 and prostacyclin (PGI2) in isolated, perfused kidneys of spontaneously hypertensive rats, Biochem. Pharmacol. 28:3601–3609 (1979).PubMedCrossRefGoogle Scholar
  75. 75.
    Y. Shibouta, Z-I. Terashita, Y. Inada, K. Nishikawa, S. Kikuchi, Enhanced thromboxane A2 biosynthesis in the kidney of spontaneously hypertensive rats during development of hypertension, Eur. J. Pharmacol. 70:247–256 (1981).PubMedCrossRefGoogle Scholar
  76. 76.
    Y. Shibouta, Z-I. Terashita, Y. Inada, K. Kato, K. Nishikawa, Renal effects of pinane-thromboxane A2 and indomethacin in saline volume-expanded spontaneously hypertensive rats, Eur. J. Pharmacol. 85:51–59 (1982).PubMedCrossRefGoogle Scholar
  77. 77.
    H.D. Uderman, R.J. Workman, E.K. Jackson, Attenuation of the development of hypertension in spontaneously hypertensive rats by the thromboxane synthetase inhibitor, 4′-(imidazol-1-YL)acetophenone, Prostaglandins 24:237–244 (1982).PubMedGoogle Scholar
  78. 78.
    H.J. Grone, R.S. Grippo, W.J. Arendshorst, M.J. Dunn, Role of thromboxane in control of arterial pressure and renal function in young spontaneously hypertensive rats, Am. J. Physiol. 250:F488–F496 (1986).PubMedGoogle Scholar
  79. 79.
    M.L. Purkerson, K.J. Martin, J. Yates, J.M. Kissane, S. Klahr, Thromboxane synthesis and blood pressure in spontaneously hypertensive rats, Hypertension 8:1113–1120 (1986).PubMedCrossRefGoogle Scholar
  80. 80.
    F. DeClerck, L. VanGorp, B. Xhonneux, Y. Somers, L. Wouters, Enhanced platelet turnover and prostaglandin production in spontaneously hypertensive rats, Thromb. Res. 27:243–249 (1982).CrossRefGoogle Scholar
  81. 81.
    A. Martineau, M. Robillard, P. Falardeau, Defective synthesis of vasodilator prostaglandins in the spontaneously hypertensive rat, Hypertension 6:1161–1165 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Saulo Klahr
    • 1
  • Mabel L. Purkerson
    • 1
  1. 1.Renal Division, Department of MedicineWashington University School of MedicineSt. LouisUSA

Personalised recommendations