Advertisement

Video Input Techniques

  • Joseph J. Capowski

Abstract

In Chapter 4, you entered anatomic data from tissue into the computer by looking directly at a microscope image and passing a cursor over the image. The cursor was mixed with the microscope image by an optical device such as a camera lucida. In Chapter 5, you placed a photograph or drawing of the tissue on a data tablet and passed a cursor, the data tablet cross hairs, over the image. In this case also, the cursor was mixed optically with the image. In both instances, the data that were stored in the computer were a series of coordinate locations of the cursor as it moved about the image.

Keywords

Gray Level Branch Point Data Collection System White Pixel Frame Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

For Further Reading

  1. Hillman, D. E. (1976). A tridimensional reconstruction computer system for neuroanatomy. Comput. Med. 5 (6): 1–2.Google Scholar
  2. Lindsay, R. D. (1977a). Computer analysis of neuronal structures. In: Computers in Biology and Medicine ( G. P. Moore, ed.). New York: Plenum Press, pp. 71–79.Google Scholar
  3. Lindsay, R. D. (1977b). The video computer microscope and A.R.G.O.S. In: Computer Analysis of Neuronal Structures ( R. D. Lindsay, ed.). New York: Plenum Press, pp. 1–19.CrossRefGoogle Scholar
  4. Paldino, A., and E. Harth (1977a). A measuring system for analyzing neuronal fiber structure. In: Computer Analysis of Neuronal Structures ( R. D. Lindsay, ed.). New York: Plenum Press, pp. 59–71.CrossRefGoogle Scholar
  5. Paldino, A. M. (1979). A novel version of the computer microscope for the quantitative analysis of biological structures: Application to neuronal morphology. Comput. Biomed. Res. 12: 413–431.PubMedCrossRefGoogle Scholar
  6. Yelnik, J., G. Percheron, J. Perbos, and C. François (1981). A computer-aided method for the quantitative analysis of dendritic arborizations reconstructed from several serial sections. J. Neurosci. Methods 4: 347–364.PubMedCrossRefGoogle Scholar
  7. Lindsay, R. D., and A. B. Scheibel (1976). Quantitative analysis of dendritic branching pattern of granular cells from human dentate gyrus. Exp. Neurol. 52: 295–310.CrossRefGoogle Scholar
  8. Paldino, A., and E. Harth (1977b). A computerized study of Golgi-impregnated axons in rat visual cortex. In: Computer Analysis of Neuronal Structures ( R. D. Lindsay, ed.). New York: Plenum Press, pp. 189–207.CrossRefGoogle Scholar
  9. Calvet, M. C., J. Calvet, and R. Camacho-Garcia (1985). The Purkinje cell dendritic tree: A computer-aided study of its development in the cat and in culture. Brain Res. 331: 235–250.PubMedCrossRefGoogle Scholar
  10. Huijsmans, D. P. (1983). Closed 2D contour algorithms for 3D reconstruction. In: Eurographics ‘83 Conference Proceedings ( P. J. W. ten Hagen, ed.). Amsterdam: Elsevier, pp. 157–168.Google Scholar
  11. Hibbard, L. S., and R. A. Hawkins (1984). Three-dimensional reconstruction of metabolic data from quantitative autoradiography of rat brain. Am. J. Physiol. 247: E412 - E419.PubMedGoogle Scholar
  12. Huijsmans, D. P., W. H. Lamers, J. A. Los, J. Smith, and J. Strackee (1984). Computer-aided three-dimensional reconstruction from serial sections: A software package for reconstruction and selective image generation for complex topologies. In: Eurographics ’94 Conference Proceedings. (K. Bo and H. Tucker, eds.). Amsterdam. Elsevier, pp. 3–13.Google Scholar
  13. Augustine, J. R., T. Huntsberger, and M. Moore (1985). Computer-aided reconstructive morphology of the baboon abducens nucleus. Anat. Rec. 212: 210–217.PubMedCrossRefGoogle Scholar
  14. Curcio, C. A., and K. R. Sloan (1986). Computer-assisted morphometry using video-mixed microscopic images and computer graphics. Anat. Rec. 214: 329–337.PubMedCrossRefGoogle Scholar
  15. Rogers, W. T. (1986). Digital microscopy for neurobiology research. College Report, The DuPont Company Sept/Oct.Google Scholar
  16. Toga, A. W., and T. L. Arnicar-Sulze (1987). Digital image reconstruction for the study of brain structure and function. J. Neurosci. Methods 20: 7–21.PubMedCrossRefGoogle Scholar
  17. Hibbard, L. S., J. S. McGlone, D. W. Davis, and R. A. Hawkins (1987). Three-dimensional representation and analysis of brain energy metabolism. Science 236: 1641–1646.PubMedCrossRefGoogle Scholar
  18. Schwaber, J. S., W. T. Rogers, K. Satoh, and H. C. Fibiger (1987). Distribution and organization of cholinergic neurons in the rat forebrain demonstrated by computer-aided data acquisition and three-dimensional reconstruction. J. Comp. Neurol. 263: 309–325.PubMedCrossRefGoogle Scholar
  19. Reddy, D. R., W. J. Davis, R. B. Ohlander, and D. J. Bihary (1973). Computer analysis of neuronal structure. In: Intracellular Staining in Neurobiology ( S. B. Kater and C. Nicholson, eds.). New York: Springer-Verlag, pp. 227–253.Google Scholar
  20. Llinas, R., and D. E. Hillman (1975). A multipurpose tridimensional reconstruction computer system for neuroanatomy. In: Golgi Centennial Symposium Proceedings (M. Santini, ed.). New York: Raven Press, pp. 71–79.Google Scholar
  21. Hillman, D. E. (1976). A tridimensional reconstruction computer system for neuroanatomy. Comput. Med. 5 (6): 1–2.Google Scholar
  22. Hillman, D. E., R. Llinas, and M. Chujo (1977). Automatic and semiautomatic analysis of nervous system structure. In: Computer Analysis of Neuronal Structures ( R. D. Lindsay, ed.). New York: Plenum Press, pp. 73–90.CrossRefGoogle Scholar
  23. Hibbard, L. S., and R. A. Hawkins (1984). Three-dimensional reconstruction of metabolic data from quantitative autoradiography of rat brain. Am. J. Physiol. 247: E412 - E419.PubMedGoogle Scholar
  24. Kropf, N., I. Sobel, and C. Levinthal (1985). Serial section reconstruction using CARTOS. In: The Microcomputer in Cell and Neurobiology Research ( R. R. Mize, ed.). New York: Elsevier, pp. 265–291Google Scholar
  25. Jimenez, J., A. Santisteban, J. M. Carazo, and J. L. Carrascosa (1986). Computer graphic display method for visualizing three-dimensional biological structures. Science 232: 1113–1115.PubMedCrossRefGoogle Scholar
  26. Winslow, J. L., M. Bjerknes, and H. Cheng (1987). Three-dimensional reconstruction of biological objects using a graphics engine. Comput. Biomed. Res. 20 (6): 583–602.PubMedCrossRefGoogle Scholar
  27. Hibbard, L. S., J. S. McGlone, D. W. Davis, and R. A. Hawkins (1987). Three-dimensional representation and analysis of brain energy metabolism. Science 236: 1641–1646.PubMedCrossRefGoogle Scholar
  28. Radermacher, M., T. Wagenknecht, A. Verschoor, and J. Frank (1987a). Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146 (2): 113–136.Google Scholar
  29. Radermacher, M., T. Wagenknecht, A. Verschoor, and J. Frank (1987b). Three-dimensional structure of the large ribosomal subunit from Escherichia coli. EMBO J. 6 (4): 1107–1114.Google Scholar
  30. Hibbard, L. S., and R. A. Hawkins (1988). Objective image alignment for three-dimensional reconstruction of digital autoradiograms. J. Neurosci. Meth. 26: 55–74.CrossRefGoogle Scholar
  31. Hibbard, L. S., and R. A. Hawkins (1984). Three-dimensional reconstruction of metabolic data from quantitative autoradiography of rat brain. Am. J. Physiol. 247: E412 - E419.PubMedGoogle Scholar
  32. Augustine, J. R., T. Huntsberger, and M. Moore (1985). Computer-aided reconstructive morphology of the baboon abducens nucleus. Anat. Rec. 212: 210–217.PubMedCrossRefGoogle Scholar
  33. Hibbard, L. S., J. S. McGlone, D. W. Davis, and R. A. Hawkins (1987). Three-dimensional representation and analysis of brain energy metabolism. Science 236: 1641–1646.PubMedCrossRefGoogle Scholar
  34. Shantz, M. J. (1976). A minicomputer-based image analysis system. In: Computer Technology in Neuroscience ( P. B. Brown, ed.). Washington, DC: Hemisphere, pp. 113–129.Google Scholar
  35. Kater, S. B., C. S. Cohan, G. A. Jacobs, and J. P. Miller (1986). Image intensification of stained, functioning, and growing neurons. In: Optical Methods in Cell Physiology ( P. de Weer and B. M. Salzberg, eds.). New York: John Wiley & Sons, pp. 31–50.Google Scholar
  36. Webb, W. W. (1986). Light microscopy-a modern renaissance. Ann. N.Y. Acad. Sci. 483: 387–391.PubMedCrossRefGoogle Scholar
  37. Tieman, D. G., and R. K. Murphey (1985). A computer-assisted video technique for preparing pictures of intracellularly filled, whole-mounted neurons in the cricket. Soc. Neurosci. Abstr. 11: 184. 5.Google Scholar
  38. Tieman, D. G., R. K. Murphey, J. T. Schmidt, and S. B. Tieman (1986). A computer-assisted video technique for preparing high resolution pictures and sterograms from thick specimens. J. Neurosci. Methods 17: 23 1245.Google Scholar
  39. Boyle, P. J. R., and D. G. Whitlock (1974). The application of a computer controlled microscope to auto-radiographs of nerve tissue. DECUS Proc. 1 (2): 95–99.Google Scholar
  40. Boyle, P. J. R., and D. G. Whitlock (1977). A computer-controlled microscope as a device for evaluating autoradiographs. In: Computer Analysis of Neuronal Structures ( R. D. Lindsay, ed.). New York: Plenum Press, pp. 133–148.CrossRefGoogle Scholar
  41. Wann, D. F. (1976). Counting high contrast closed objects in biological images using a 525-line raster scan television camera and a minicomputer. In: Computer Technology in Neuroscience ( P. B. Brown, ed.). Washington, DC: Hemisphere, pp. 135–137.Google Scholar
  42. Wann, D. F., J. L. Price, W. M. Cowan, and M. A. Agulnek (1974). An automated system for counting silver grains in autoradiographs. Brain Res. 81: 31–58.PubMedCrossRefGoogle Scholar
  43. Mendelsohn, M. L., and B. H. Mayall (1972). Computer-oriented analysis of human chromosomes. III. Focus. Comput. Biol. Med. 2: 137–150.PubMedCrossRefGoogle Scholar
  44. Kujoory, M. A., B. H. Mayall, an M. L. Mendelsohn (1973). Focus-assist device for a flying-spot microscope. IEEE Trans. Biomed. Eng. 20: 126–132.PubMedCrossRefGoogle Scholar
  45. Wann, D. F. (1976). Counting high contrast closed objects in biological images using a 525-line raster scan television camera and a minicomputer. In: Computer Technology in Neuroscience ( P. B. Brown, ed.). Washington, DC: Hemisphere, pp. 135–137.Google Scholar
  46. Harms, H., and H. M. Aus (1984). Comparison of digital focus criteria for a TV microscope system. Cytometry 5: 236–243.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Joseph J. Capowski
    • 1
    • 2
  1. 1.Eutectic Electronics, Inc.RaleighUSA
  2. 2.The University of North CarolinaChapel HillUSA

Personalised recommendations