Advertisement

Input from Serial Sections

  • Joseph J. Capowski
  • Ellen M. Johnson

Abstract

Serial section reconstruction has a wide range of applications. The technique of serial section reconstruction is used to build models of all kinds of structures, both biological and mechanical. Indeed, examples of serial section reconstruction can be found in boat building, dentistry, and the manufacturing of machine parts. We limit this chapter to the use of serial section reconstruction in neuroanatomy.

Keywords

Serial Section 14th Section Neuron Reconstruction Cross Hair Boat Building 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

For Further Reading

  1. Boivie, J. G., G. Grant, and H. Ulfendahl (1968). The X-Y recorder used for mapping under the microscope. Acta Physiol. Scand. 74:Al-A2.Google Scholar
  2. Patterson, H. A., W. B. Wan, and A. J. Kleinman (1976). A mapping device for attachment to the light microscope. Technical note. Brain Res. 102: 323–328.PubMedGoogle Scholar
  3. Eidelberg, E., and F. Davis (1977). An improved electronic pantograph. J. Histochem. Cytochem. 25: 1016–1018.PubMedGoogle Scholar
  4. Reed, D. J., R. Gold, and D. R. Humphrey (1980). A simple computerized system for plotting the locations of cells of specified sizes in a histological section. Neurosci. Lett. 20: 233–236.PubMedGoogle Scholar
  5. Davis, B. J. (1985). The electronic pantograph: Amplifier couples microscope stage to X-Y plotter. Brain Res. Bull. 15: 533–536.PubMedGoogle Scholar
  6. Forbes, D. J., and R. W. Petry (1979). Computer-assisted mapping with the light microscope. J. Neurosci. Methods 1: 77–94.PubMedGoogle Scholar
  7. Williams, F. G., and R. Elde (1982). A microcomputer-aided system for the graphic reproduction of neurohistochemical maps. Comput. Prog. Biomed. 15: 93–102.Google Scholar
  8. Mize, R. R. (1983a). A computer electron microscope plotter for mapping spatial distributions in biological tissues. J. Neurosci. Methods 8: 183–195.PubMedGoogle Scholar
  9. Mize, R. R. (1985b). A microcomputer plotter for use with light and electron microscopes. In: The Microcomputer in Cell and Neurobiology Research ( R. R. Mize, ed.). New York: Elsevier, pp. 112–133.Google Scholar
  10. Prothero, J. S., M. Riggins, A. Lindsay, R. Harris, and J. W. Prothero (1985). Three-dimensional reconstruction from serial sections. III. AUTOSCAN, a software package in FORTRAN for semiautomated photomicrography. Comput. Biomed. Res. 18: 132–136.PubMedGoogle Scholar
  11. Dykes, E., and J. G. Clement (1980). The construction and application of an X-Y coordinate plotting microscope. J. Dent. Res. 59: 1800.Google Scholar
  12. Foote, S. L., S. E. Loughlin, P. S. Cohen, F. E. Bloom, and R. B. Livingston (1980). Accurate three-dimensional reconstruction of neuronal distributions in brain: Reconstruction of the rat nucleus locus coeruleus. J. Neurosci. Methods 3: 159–173.PubMedGoogle Scholar
  13. Afshar, F., and E. Dykes (1982). A three-dimensional reconstruction of the human brain stem. J. Neurosurg. 57: 491–495.PubMedGoogle Scholar
  14. Zsuppán, F. (1985). A computer reconstruction system for biological macro-and microstructures traced from serial sections. Acta Morphol. Hung. 33 (1–2): 33–44.PubMedGoogle Scholar
  15. Upfold, J. B., M. S. R. Smith, and M. J. Edwards (1987). Three-dimensional reconstruction of tissue using computer-generated images. J. Neurosci. Methods 20: 131–138.PubMedGoogle Scholar
  16. Afshar, F., and E. Dykes (1982). A three-dimensional reconstruction of the human brain stem. J. Neurosurg. 57: 491–495.PubMedGoogle Scholar
  17. Afshar, F., and E. Dykes (1984). Computer-generated three-dimensional visualization of the trigeminal nuclear complex. Surg. Neurol. 22: 189–196.PubMedGoogle Scholar
  18. Sivapragasam, S., J. G. Clement, and E. Dykes (1982). A three-dimensional assessment of dental asymmetry in human maxillary first premolar teeth. Acta Stereol. 82: 297–304.Google Scholar
  19. Cowan, W. M., and D. F. Wann (1973). A computer system for the measurement of cell and nuclear sizes. J. Microsc. (Oxf.) 99: 331–448.Google Scholar
  20. Dunn, R. F., O’Leary, D. P., and Kumley, W. E. (1975). Quantitative analysis of micrographs by computer graphics. J. Microsc. (Oxf.) 105: 205–213.Google Scholar
  21. Dunn, R. F., D. P. O’Leary, and W. E. Kumley (1977). Online computerized analysis of peripheral nerves. In: Computer Analysis of Neuronal Structures ( R. D. Lindsay, ed.). New York: Plenum Press, pp. 111–132.Google Scholar
  22. Curcio, C. A., and K. R. Sloan (1981). A computer system for combined neuronal mapping and morphometry. J. Neurosci. Methods 4: 267–276.PubMedGoogle Scholar
  23. McKanna, J. A. (1985). Micros applied to neuroanatomy: Computer-aided morphometry. In: Microcomputers in the Neurosciences ( G. A. Kerkut, ed.). Oxford: Clarendon Press, pp. 152–201.Google Scholar
  24. McKanna, J. A., and V. A. Casagrande (1985). Computerized radioautographic grain counting. In: The Microcomputer in Cell and Neurobiology Research ( R. R. Mize, ed.). New York: Elsevier, pp. 356–373.Google Scholar
  25. DeVoogd, T. J., F. L. F. Chang, M. K. Floeter, M. J. Jencius, and W. T. Greehough (1981). Distortions induced in neuronal quantification by camera lucida analysis: Comparisons using a semiautomated data acquisition system. J. Neurosci. Methods 3: 284–294.Google Scholar
  26. Pullen, A. H. (1982). A structured program in BASIC for the analysis of peripheral nerve morphometry. J. Neurosci. Methods 5: 103–120.PubMedGoogle Scholar
  27. Usson, Y., S. Torch, and G. Douret d’Aubigny (1987). A method for automatic classification of large and small myelinated fibre populations in peripheral nerves. J. Neurosci. Methods 20: 237–248.PubMedGoogle Scholar
  28. Becker, L. E., D. L. Armstrong, and F. Chan (1986). Dendritic atrophy in children with Down’s syndrome. Ann. Neurol. 20: 520–526.PubMedGoogle Scholar
  29. Brown, P. B., G. R. Busch, and J. Whittington (1979). Anatomical changes in cat dorsal horn cells after transection of a single dorsal root. Exp. Neurol. 64: 453–468.PubMedGoogle Scholar
  30. Tamamaki, N., K. Abe, and Y. Nojyo (1988). Three-dimensional analysis of the whole axonal arbors originating from single CA2 pyramidal neurons in the rat hippocampus with the aid of a computer graphic technique. Brain Res. 452: 255–272.PubMedGoogle Scholar
  31. Vaughn, J. E., R. P. Barber, and T. J. Sims (1988). Dendritic development and preferential growth into synaptogenic fields: A quantitative study of Golgi-impregnated spinal motor neurons. Synapse 2: 69–78.PubMedGoogle Scholar
  32. Cornelisse, J. T. W. A., and T. J. T. P. van den Berg (1984). Profile boundary length can be overestimated by as much as 41% when using a digitizer tablet. J. Microsc. 136 (3): 341–344.Google Scholar
  33. Levinthal, C., and R. Ware (1972). Three dimensional reconstruction from serial sections. Nature 236: 207–210.Google Scholar
  34. Capowski, J. J. (1973). A general purpose 3D physical modeling program. Comput. Graphics 7 (3): 24–28.Google Scholar
  35. Prothero, J. W., A. Tamarin, and R. Pickering (1973). Morphometrics of living specimens. A methodology for the quantitative three-dimensional study of growing microscopic embryos. J. Microscp. 101 (1): 31–58.Google Scholar
  36. Willey, T. J., R. L. Schultz, and A. H. Gott (1973). Computer graphics in three dimensions for perspective reconstruction of brain ultrastructure. IEEE Trans. Biomed. Eng. 20: 288–291.PubMedGoogle Scholar
  37. Levinthal, C., E. R. Macagno, and C. Tountas (1974). Computer-aided reconstruction from serial sections. Fed. Proc. 33 (12): 2336–2340.PubMedGoogle Scholar
  38. Caban, L. D., and B. T. Trombka (1975). Computer graphics three-dimensional reconstruction of thalamic anatomy from serial sections. Comput. Prog. Biomed. 5: 91–98.Google Scholar
  39. Ware, R. W., and V. LoPresti (1975). Three-dimensional reconstruction from serial sections. In: International Review of Cytology, Vol. 40 (G. H. Boume and J. F. Danielli, eds.). New York: Academic Press, pp. 325–440.Google Scholar
  40. Macagno, E. R., C. Levinthal, C. Tountas, R. Bornholdt, and R. Abba (1976). Recording and analysis of 3-D information from serial section micrographs: The CARTOS system. In: Computer Technology in Neuroscience ( P. B. Brown, ed.). Washington, DC: Hemisphere, pp. 97–112.Google Scholar
  41. Veen, A., and L. D. Peachey (1977). TROTS: A computer graphics system for three-dimensional reconstruction from serial sections. Comput. Graphics 2: 135–150.Google Scholar
  42. Macagno, E. R. (1978). Mapping synaptic sites between identified neuronsin leech CNS by means of 3-D computer reconstructions from serial sections. Brain Theory Newsl. 3 (3/4): 186–189.Google Scholar
  43. Shantz, M. J., and G. D. McCann (1978). Computational morphology: Three-dimensional computer graphics for electron microscopy. IEEE Trans. Biomed. Eng. 25: 99–103.PubMedGoogle Scholar
  44. Marino, T. A., P. Nong Cook, L. T. Cook, and S. J. Dwyer III (1980). The use of computer imaging techniques to visualize cardiac muscle cells in three dimensions. Anat. Rec. 198: 537–546.PubMedGoogle Scholar
  45. Stevens, J. K., T. L. Davis, N. Friedman, and P. Sterling (1980a). A systematic approach to reconstructing microcircuitry by electron microscopy of serial sections. Brain Res. Rev. 2: 265–293.Google Scholar
  46. Moens, P. B., and T. Moens (1981). Computer measurements and graphics of three-dimensional cellular ultrastructure. J. Ultrastruct. Res. 75: 131–141.PubMedGoogle Scholar
  47. Briarty, L. G., J. Patrick, J. Fisher, and P. H. Jenkins (1982). Microscopy, morphology and microcomputers. Acta Stereol. 82: 227–234.Google Scholar
  48. Chawla, S. D., L. Glass, S. Friewald, and J. W. Procter (1982). An interactive computer graphic system for 3-D steroscopic reconstruction from serial sections: Analysis of metastatic growth. Comput. Biol. Med. 12 (3): 223–232.PubMedGoogle Scholar
  49. Falen, S. W., and D. S. Packard, Jr. (1982). Computer-assisted stereoscopic reconstruction of biological tissues. Proc. Natl. Comput. Graphics Assn. 2: 995–1003.Google Scholar
  50. Perkins, W. J., and R. J. Green (1982). Three-dimensional reconstruction of biological sections. J. Biomed. Eng. 4: 37–43.PubMedGoogle Scholar
  51. Prothero, J. S.. and J. W. Prothero (1982). Three-dimensional reconstruction from serial sections. I. A portable microcomputer-based software package in FORTRAN. Comput. Biomed. Res. 15: 598–604.PubMedGoogle Scholar
  52. Freeman, J., and R. S. Meltzer (1983). CARTOS revives biological approach from turn of century. Comput. Graphics News May/June: 17–18.Google Scholar
  53. Gras, H., and F. Killman (1983). NEUREC-a program package for 3-D reconstruction from serial sections using a microcomputer. Comput. Prog. Biomed. 17: 145–156.Google Scholar
  54. Hengstenberg, R., H. Bulthoff, and B. Hengstenberg (1983). Three-dimensional reconstruction and stereoscopic display of neurons in the fly visual system. In: Functional Neuroanatomy ( N. J. Strausfeld, ed.). Berlin: Springer-Verlag, pp. 183–205.Google Scholar
  55. Johnson, E. M., and J. J. Capowski (1983). A system for the three-dimensional reconstruction of biological structures. Comput. Biomed. Res. 16: 79–87.PubMedGoogle Scholar
  56. Johnson, E. M., and J. J. Capowski (1985). Principles of reconstruction and three-dimensional display of serial sections using a computer. In: The Microcomputer in Cell and Neurobiology Research ( R. R. Mize, ed.). New York: Elsevier, pp. 249–263.Google Scholar
  57. Speck, P. T., and N. J. Strausfeld (1983). Portraying the third dimension in neuroanatomy. In: Functional Neuroanatomy ( N. J. Strausfeld, ed.). Berlin: Springer-Verlag, pp. 156–182.Google Scholar
  58. Street, C. H., and R. R. Mize (1983). A simple microcomputer-based three-dimensional serial section reconstruction system (Micuos). J. Neurosci. Methods 7: 359–375.PubMedGoogle Scholar
  59. Sundsten, J. W., and J. W. Prothero (1983). Three-dimensional reconstruction from serial sections: II. A microcomputer-based facility for rapid data collection. Anat. Rec. 207: 665–671.PubMedGoogle Scholar
  60. Stevens, J. K., and J. Trogadis (1984). Computer-assisted reconstruction from serial electron micrographs: A tool for the systematic study of neuronal form and function. Adv. Cell. Neurobiol. 5: 341–369.Google Scholar
  61. Young, S. L., E. K. Fram, and B. L. Craig (1985). Three-dimensional reconstruction and quantitative analysis of rat lung type II cells: a computer-based study. Am. J. Anat. 174: 1–14.PubMedGoogle Scholar
  62. Young, S. L., E. K. Fram, and B. L. Craig (1985). Three-dimensional reconstruction and quantitative analysis of rat lung type II cells: a computer-based study. Am. J. Anat. 174: 1–14.PubMedGoogle Scholar
  63. Young, S. L., S. Royer, P. M. Groves, and J. C. Kinnamon (1987). Three-dimensional reconstructions from serial micrographs using the IBM PC. J. Electron Microsc. Tech. 6: 207–217.Google Scholar
  64. Braverman, M. S., and I. M. Braverman (1986). Three-dimensional reconstruction of objects from serial sections using a microcomputer graphics system. J. Invest. Dermatol. 86: 290–294.PubMedGoogle Scholar
  65. Sinha, U. K., L. I. Terr, F. R. Galey, and F. H. Linthicum (1987). Computer-aided three-dimensional reconstruction of the cochlear nerve root. Arch. Otolaryngol. Head Neck Surg. 113: 651–655.PubMedGoogle Scholar
  66. Smith, R. G. (1987). MONTAGE: A system for three-dimensional reconstruction by personal computer. J. Neurosci. Methods 21: 55–69.PubMedGoogle Scholar
  67. Yaegashi, H., T. Takahashi, and M. Kawasaki (1987). Microcomputer-aided reconstruction: A system designed for the study of 3-D microstructure in histology and histopathology. J. Microsc. 146 (1): 55–65.PubMedGoogle Scholar
  68. Lopresti, V., E. R. Macagno, and C. Levinthal (1973). Structure and development of neuronal connections in isogenic organisms: Cellular interactions in the development of the optic lamina of Daphnia. Proc. Natl. Acad. Sci. U.S.A. 70 (2): 433–437.Google Scholar
  69. Macagno, E. R., C. Levinthal, C. Tountas, R. Bornholdt, and R. Abba (1976). Recording and analysis of 3-D information from serial section micrographs: The CARTOS system. In: Computer Technology in Neuroscience ( P. B. Brown, ed.). Washington, DC: Hemisphere, pp. 97–112.Google Scholar
  70. Kimura, O., E. Dykes, and R. W. Fearnhead (1977). The relationship between the surface area of the enamel crowns of human teeth and that of the dentine-enamel junction. Arch. Oral Biol. 22: 677–683.PubMedGoogle Scholar
  71. Ellias, S. A., and J. K. Stevens (1980). The dendritic varicosity: A mechanism for electrically isolating the dendrites of cat retinal amacrine cells? Brain Res. 196: 365–372.PubMedGoogle Scholar
  72. Harris, K. M., and J. K. Stevens (1988). Study of dendritic spines by serial electron microscopy and three-dimensional reconstructions. In: Intrinsic Determinants of Neuronal Form and Function ( R. J. Lasek and M. M. Black, eds.). New York: Alan R. Liss, pp. 179–199.Google Scholar
  73. Chawla, S. D., L. Glass, and J. W. Procter (1981). Three-dimensional reconstruction of disseminated cancer modules. Cancer Biochem. Biophys. 5: 153–161.PubMedGoogle Scholar
  74. German, D. C., D. S. Schlusselberg, and D. J. Woodward (1983). Three-dimensional computer reconstruction of midbrain dopaminergic neuronal populations: From mouse to man. Neural Transm. 57: 243–254.Google Scholar
  75. Sasaki, S., J. K. Stevens, and N. Bodick (1983). Serial reconstruction of microtubular arrays within dendrites of the cat retinal ganglion cell: The cytoskeleton of a vertebrate dendrite. Brain Res. 259: 193–206.PubMedGoogle Scholar
  76. Nierzwicki-Bauer, S. A., D. L. Balkwill, and S. E. Stevens, Jr. (1983). Use of a computer-aided reconstruction system to examine the three-dimensional architecture of cyanobacteria. J. Ultrastruc. Res. 84: 73–82.Google Scholar
  77. Spacek, J., and M. Hartmann (1983). Three-dimensional analysis of dendritic spines. Anat. Embryol. 167: 289–310.PubMedGoogle Scholar
  78. Thompson, R. P., Y. M. Wong, and T. F. Fitzharris (1983). A computer graphic study of cardiac truncal septation. Anat. Rec. 206: 207–214.Google Scholar
  79. Stevens, J. K., and J. Trogadis (1984). Computer-assisted reconstruction from serial electron micrographs: A tool for the systematic study of neuronal form and function. Adv. Cell. Neurobiol. 5: 341–369.Google Scholar
  80. Slepecky, N., H. Larsen, and C. Angelborg (1984). Computerized reconstruction of the regional blood flow in the rodent cochlea. Hearing Res. 15: 95–101.Google Scholar
  81. Gambino, D. R., L. T. Malmgren, and R. R. Gacek (1985). Three-dimensional computer reconstruction of the neuromuscular junction distribution in the human posterior cricoarytenoid muscle. Laryngoscope 95 (5): 556–560.PubMedGoogle Scholar
  82. Greenberg, M., J. Stevens, and S. Ellias (1985). Highly irregular shapes of normal type C axons: Serial EM study. Soc. Neurosci. Abstr. 11: 184. 4.Google Scholar
  83. Antal, M., R. Kraftsik, G. Székely, and H. van der Loos (1986). Distal dendrites of frog motor neurons: A computer-aided electron microscopic study of cobalt-filled cells. J. Neurocytol. 15: 303–310.PubMedGoogle Scholar
  84. Coombs, G. H., L. Tetley, V. A. Moss, and K. Vickerman (1986). Three dimensional structure of the leishmania amastigote as revealed by computer-aided reconstruction from serial sections. Parasitology 92: 13–23.PubMedGoogle Scholar
  85. Henson, O. W., and M. M. Henson (1986). Morphometric analysis of cochlear structures in the mustached bat, Pteronotus parnellii parnellii. In: 3rd International Symposium on Animal Sonar Systems. Helsingor, Denmark. New York: Plenum Press, pp. 301–305.Google Scholar
  86. Jacobs, J. R., and J. K. Stevens (1986). Changes in the organization of the neuritic cytoskeleton during nerve growth factor-activated differentiation of the PC12 cells: A serial electron microscopic study of the development and control of neufite shape. J. Cell Biol. 103: 895–906.PubMedGoogle Scholar
  87. Mercer, R. R., and J. D. Crapo (1987). Three-dimensional reconstruction of the rat acinus. J. Appl. Physiol. 63 (2): 785–794.PubMedGoogle Scholar
  88. Villa, A. E. P., M. Bruchez, G. M. Simm, and S. Jeandrevin (1987). A computer-aided three-dimensional reconstruction of brain structures using high level computer graphics. Int. J. Biomed. Comput. 20: 289302.Google Scholar
  89. Harris, K. M., and J. K. Stevens (1988). Study of dendritic spines by serial electron microscopy and three-dimensional reconstructions. In: Intrinsic Determinants of Neuronal Form and Function ( R. J. Lasek and M. M. Black, eds.). New York: Alan R. Liss, pp. 179–199.Google Scholar
  90. Kinnamon, J. C., T. A. Sherman, and S. D. Roper (1988). Ultrastructure of mouse vallate taste buds: III. Patterns of synaptic connectivity. J. Comp. Neurol. 270: 1–10.PubMedGoogle Scholar
  91. Royer, S. M., and J. C. Kinnamon (1988). Ultrastructure of mouse foliate taste buds: Synaptic and nonsynaptic interactions between taste cells and nerve fibers. J. Comp. Neurol. 270: 11–24.PubMedGoogle Scholar
  92. Stevens, J. K., J. Trogadis, and J. R. Jacobs (1988). Development and control of axial neurite form: A serial electron microscopic analysis. In: Intrinsic Determinants of Neuronal Form and Function ( R. J. Lasek and M. M. Black, eds.). New York: Alan R. Liss, pp. 115–145.Google Scholar
  93. Wind, G., R. W. Finley, and N. M. Rich (1988). Three-dimensional computer graphics modeling of ballistic injuries. J. Trauma 28 (1): S16 - S20.PubMedGoogle Scholar
  94. Capowski, J. J. (1977). Computer-aided reconstruction of neuron trees from several serial sections. Comput. Biomed. Res. 10: 617–629.PubMedGoogle Scholar
  95. Capowski, J. J., and M. J. Sedivec (1981). Accurate computer reconstruction and graphics display of complex neurons utilizing state-of-the-art interactive techniques. Comput. Biomed. Res. 14: 518–532.PubMedGoogle Scholar
  96. Prothero, J. S., and J. W. Prothero (1986). Three-dimensional reconstruction from serial sections IV. The reassembly problem. Comput. Biomed. Res. 19: 361–373.PubMedGoogle Scholar
  97. Dierker, M. L. (1976a). An algorithm for the alignment of serial sections. In: Computer Technology in Neuroscience ( P. B. Brown, ed.). Washington, DC: Hemisphere, pp. 131–133.Google Scholar
  98. Gentile, A. M., and E. Harth (1978). The alignment of serial sections by spatial filtering. Comput. Biomed. Res. 11: 537–551.PubMedGoogle Scholar
  99. Fahle, M. (1988). The double microscope: Its use in three-dimensional reconstruction from serial sections. J. Neurosci. Methods 23: 95–99.PubMedGoogle Scholar
  100. West, M. J. (1985). Neuroanatomical modeling with CADCAM. Soc. Neurosci. Abstr. 11: 184. 6.Google Scholar
  101. Ameil, M., J. F. Delattre, B. Cordobes, and J. B. Flament (1984). Computerized reconstruction of an anatomical structure based on digitized sections. Anat. Clin. 5: 261–264.PubMedGoogle Scholar
  102. Wind, G., V. K. Dvorak, and J. A. Dvorak (1986). Computer graphic modeling in surgery. Orthop. Clin. North Am. 17 (4): 657–668.PubMedGoogle Scholar
  103. Woolsey, T. A., and M. L. Dierker (1978). Computer-assisted recording of neuroanatomical data. In: Neuroanatomical Research Techniques ( R. T. Robertson, ed.). New York: Academic Press, pp. 4785.Google Scholar
  104. Woolsey, T. A., and M. L. Dierker (1982). Morphometric approaches to neuroanatomy with emphasis on computer-assisted techniques. In: Cytochemical Methods in Neuroanatomy ( V. Chan-Palay and S. L. Palay, eds.). New York: Alan R. Liss, pp. 69–91.Google Scholar
  105. Sobel, I., C. Levinthal, and E. R. Macagno (1980). Special techniques for the automatic computer reconstruction of neuronal structures. Annu. Rev. Biophys. Bioeng. 9: 347–362.PubMedGoogle Scholar
  106. Huijsmans, D. P., W. H. Lamers, J. A. Los, and J. Strackee (1986). Toward computerized morphometric facilities: A review of 58 software packages for computer-aided three-dimensional reconstruction, quantification and picture generation from parallel serial sections. Anat. Rec. 216: 449–470.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Joseph J. Capowski
  • Ellen M. Johnson
    • 1
  1. 1.Department of PhysiologyUniversity of North CarolinaChapel HillUSA

Personalised recommendations