Advertisement

Semiautomatic Entry of Neuron Trees from the Microscope

  • Joseph J. Capowski

Abstract

Chapter 1 introduced the concept of neuron tracing as a method of transferring a neuron from its original form in the tissue to a different form—either a drawing on a sheet of paper or a physical model. Although these new forms help to overcome some of the viewing constraints of the microscope, they still are not “tractable”; that is, they are still difficult to work with mathematically. If you wish to do a statistical summarization of the neuron, for example to plot its dendritic length versus thickness, you must make tedious measurements of the drawing or model to gather the data for the graph. To alleviate this problem, the neuron should be transferred (Fig. 4-1) to a computer memory. Once stored there, a computer program can work with the structure to build three-dimensional displays and plots and to generate statistical summaries of the neurons with far less effort than you could as a human.

Keywords

Branch Point Microscope Stage Point Type Camera Lucida Neuron Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

For Further Reading

  1. Glaser, E. M., and H. van der Loos (1965). A semiautomatic computer microscope for the analysis of neuronal morphology. IEEE Trans. Biomed. Eng. 12: 22–31.PubMedCrossRefGoogle Scholar
  2. Wann, D. F., T. A. Woolsey, M. L. Dierker, and W. M. Cowan (1973). An on-line digital computer system for the semiautomatic analysis of Golgi-impregnated neurons. IEEE Trans. Biomed. Eng. 20: 233–247.PubMedCrossRefGoogle Scholar
  3. McInroy, J. L., and J. J. Capowski (1977). A graphics subroutine package for the neuroscience display processor. Comput. Graphics 11 (1): 1–12.CrossRefGoogle Scholar
  4. McMullen, N. T., B. Goldberger, C. M. Suter, and E. M. Glaser (1988). Neonatal deafening alters non-pyramidal dendrite orientation in auditory cortex: A computer microscope study in the rabbit. J. Comp. Neurol. 267: 92–106.PubMedCrossRefGoogle Scholar
  5. Overdijk, J., H. B. M. Uylings, K. Kuypers, and A. W. Kamstra (1978). An economical, semi-automtic system for measuring cellular tree structures in three dimensions, with special emphasis on Golgi-impregnated neurons. J. Microsc. 114 (3): 271–284.PubMedCrossRefGoogle Scholar
  6. DeVoogd, T. J., F. L. F. Chang, M. K. Floeter, M. J. Jencius, and W. T. Greehough (1981). Distortions induced in neuronal quantification by camera lucida analysis: Comparisons using a semiautomated data acquisition system. J. Neurosci. Methods 3: 284–294.CrossRefGoogle Scholar
  7. Capowski, J. J., and M. Réthelyi (1982). Neuron reconstruction using a Quantimet image analyzing computer. Acta Morphol. Sci. Hung. 30: 243–251.Google Scholar
  8. Amthor, F. R. (1985). Quantitative analysis and reconstruction of retinal ganglion cells using a color graphics computer. In: The Microcomputer in Cell and Neurobiology Research ( R. R. Mize, ed.). New York: Elsevier, pp. 135–153.Google Scholar
  9. Moyer, A., V. Moyer, and P. D. Coleman (1985). An inexpensive PC based system for quantification of neuronal processes. Soc. Neurosci. Abstr. 11: 261. 18.Google Scholar
  10. Freire, M. (1986). An inexpensive and interactive microcomputer system for codifying Golgi-impregnated neuronal morphology. J. Neurosci. Methods 16: 103–117.PubMedCrossRefGoogle Scholar
  11. Somogyi, J., J. J. Capowski, F. Zsuppân, and L. Dobransky (1987). Data collecting computer terminal for 3D stick model reconstruction of neuronal structure. Neurosci. 22 (suppl): S378.Google Scholar
  12. Capowski, J. J., and M. Réthelyi (1978). Computer analysis of the distribution of synaptic elements of Golgi-stained axon trees. Brain Theory Newsl. 3: 179–183.Google Scholar
  13. Glaser, E. M., H. van der Loos, and M. Gissler (1978). Preferred tangential orientation and spatial order in dendritic fields of cat auditory cortex: A computer-microscope study of Golgi-stained material. Soc. Neurosci. Abstr. 4: 210.Google Scholar
  14. Johnson, E. M., and J. J. Capowski (1983). A system for the three-dimensional reconstruction of biological structures. Comput. Biomed. Res. 16: 79–87.PubMedCrossRefGoogle Scholar
  15. Light, A. R., and E. R. Perl (1979). Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J. Comp. Neurol. 186 (2): 133–150.PubMedCrossRefGoogle Scholar
  16. McKenzie, J. D., Jr., and B. A. Vogt (1976). An instrument for light microscopic analysis of three-dimensional neuronal morphology. Brain Res. 111: 411–415.PubMedCrossRefGoogle Scholar
  17. Glaser, E. M., M. Gissler, and H. van der Loos (1979a). An interactive camera lucida computer-microscope. Soc. Neurosci. Abstr. 5: 1697.Google Scholar
  18. Capowski, J. J., M. J. Sedivec, and L. M. Mendell (1986). An illustration of spinocervical tract cells and their computer reconstruction. J. Neurosci. 6(3):front cover.Google Scholar
  19. Freiherr, G. (1987). Image combining microscope resource. Research Resources Reporter. U.S. Heath and Human Services 12 (12): 13–14.Google Scholar
  20. Kusinitz, M. (1987). 3-D nerve images made easy. New Med. Sci. 1(4):5–7.Google Scholar
  21. Lieth, E. (1987). Neuronal-Glial Interactions in CNS Development. Doctoral Dissertation, University of North Carolina at Chapel Hil.Google Scholar
  22. Cruce, W. L. R., and S. L. Steusse (1987). Three-dimensional neuron reconstruction: A retrospective view of ten years use in the anatomical laboratory. Neurosci. 22 (suppl): S393.Google Scholar
  23. Sedivec, M. J., J. J. Capowski, J. Ovelmen-Levitt, and L. M. Mendell (1982). Changes in dendritic organization of spinocervical tract neurons following partial chronic deafferentation. Soc. Neurosci. Abstr. 8: 217. 1.Google Scholar
  24. Ritz, L. A., and J. D. Greenspan (1985). Morphological features of lamina V neurons receiving nociceptive input in cat sacrocaudal spinal cord. J. Comp. Neurol. 238: 440–452.PubMedCrossRefGoogle Scholar
  25. Sugiura, Y., E. Schrank, and E. R. Perl (1985). Central terminal distribution of unmyelinated afferent fibers. Soc. Neurosci. Abstr. 11: 35. 6.Google Scholar
  26. Claiborne, B. J., D. G. Amaral, and W. M. Cowan (1986). A light and electron microscopic analysis of the mossy fibers of the rat dentate gyms. J. Comp. Neuol. 246 (4): 435–458.CrossRefGoogle Scholar
  27. Miletic, V., and H. J. Tan (1987). Morphology of Golgi-impregnated neurons in the cat and rat nucleus submedius. Soc. Neurosci. Abstr. 13: 329. 2.Google Scholar
  28. Light, A. R., and A. M. Kavookjian (1988). Morphology and ultrastructure of physiologically identified substantia gelatinosa (lamina II) neurons with axons that terminate in deeper dorsal horn laminae (III-IV). J. Comp. Neurol. 267: 172–189.PubMedCrossRefGoogle Scholar
  29. Steffen, H., and H. Van der Loos (1980). Early lesions of mouse vibrissal follicles: their influence on dendrite orientation in the cortical barrelfield. Exp. Brain Res. 40: 419–431.PubMedCrossRefGoogle Scholar
  30. Rosenthal, B. M., and W. L. R. Cruce (1985). The dendritic extent of motoneurons in frog brachial spinal cord: A computer reconstruction of HRP-filled cells. Brain Behay. Evol. 27: 106–114.CrossRefGoogle Scholar
  31. Marx, J. L. (1976). Computers: Helping to study nerve cell structure, Science 193: 565–608.CrossRefGoogle Scholar
  32. Simons, D. J., and T. A. Woolsey (1984). Morphology of Golgi-Cox-impregnated barrel neurons in rat Sod cortex. J. Comp. Neurol. 230: 119–132.PubMedCrossRefGoogle Scholar
  33. Wann, D. F., T. A. Woolsey, M. L. Dierker, and W. M. Cowan (1973). An on-line digital computer system for the semiautomatic analysis of Golgi-impregnated neurons. IEEE Trans. Biomed. Eng. 20: 233–247.PubMedCrossRefGoogle Scholar
  34. Sobel, I., C. Levinthal, and E. R. Macagno (1980). Special techniques for the automatic computer reconstruction of neuronal structures. Annu. Rev. Biophys. Bioeng. 9: 347–362.PubMedCrossRefGoogle Scholar
  35. Huijsmans, D. P., W. H. Lamers, J. A. Los, and J. Strackee (1986). Toward computerized morphometric facilities: A review of 58 software packages for computer-aided three-dimensional reconstruction, quantification and picture generation from parallel serial sections. Anat. Rec. 216: 449–470.PubMedCrossRefGoogle Scholar
  36. Cowan, W. M., and D. F. Wann (1973). A computer system for the measurement of cell and nuclear sizes. J. Microsc. (Oxf.) 99: 331–448.CrossRefGoogle Scholar
  37. Glaser, E. M. (1981). A binary identification system for use in tracing and analyzing dichotomously branching dendrite and axon systems. Comput. Biol. Med. 11: 17–19.PubMedCrossRefGoogle Scholar
  38. Overdijk, J., H. B. M. Uylings, K. Kuypers, and A. W. Kamstra (1978). An economical, semi-automtic system for measuring cellular tree structures in three dimensions, with special emphasis on Golgi-impregnated neurons. J. Microsc. 114 (3): 271–284.PubMedCrossRefGoogle Scholar
  39. Réthelyi, M. (1981). The modular construction of the neuropil in the substantia gelatinosa of the cat’s spinal cord. A computer aided analysis of Golgi-specimens. Acta Morphol. Acad. Sci. Hung. 29 (1): 1–18.PubMedGoogle Scholar
  40. Amthor, F. R. (1985). Quantitative analysis and reconstruction of retinal ganglion cells using a color graphics computer. In: The Microcomputer in Cell and Neurobiology Research ( R. R. Mize, ed.). New York: Elsevier, pp. 135–153.Google Scholar
  41. Moyer, A., V. Moyer, and P. D. Coleman (1985). An inexpensive PC based system for quantification of neuronal processes. Soc. Neurosci. Abstr. 11: 261. 18.Google Scholar
  42. Somogyi, J., J. J. Capowski, F. Zsuppân, and L. Dobransky (1987). Data collecting computer terminal for 3D stick model reconstruction of neuronal structure. Neurosci. 22 (suppl): S378.Google Scholar
  43. Sedivec, M. J., J. J. Capowski, J. Ovelmen-Levitt, and L. M. Mendell (1982). Changes in dendritic organization of spinocervical tract neurons following partial chronic deafferentation. Soc. Neurosci. Abstr. 8: 217. 1.Google Scholar
  44. Geröcs, K., M. Réthelyi, and B. Halasz (1986). Quantitative analysis of dendritic protrusions in the medial preoptic area during postnatal development. Del,. Brain Res. 26: 49–57.CrossRefGoogle Scholar
  45. Antal, M., R. Kraftsik, G. Székely, and H. van der Loos (1986). Distal dendrites of frog motor neurons: A computer-aided electron microscopic study of cobalt-filled cells. J. Neurocytol. 15: 303–310.PubMedCrossRefGoogle Scholar
  46. Capowski, J. J. (1973). A general purpose 3D physical modeling program. Comput. Graphics 7 (3): 24–28.CrossRefGoogle Scholar
  47. Lieth, E. (1987). Neuronal-Glial Interactions in CNS Development. Doctoral Dissertation, University of North Carolina at Chapel Hil.Google Scholar
  48. Ritz, L. A., and J. D. Greenspan (1985). Morphological features of lamina V neurons receiving nociceptive input in cat sacrocaudal spinal cord. J. Comp. Neurol. 238: 440–452.PubMedCrossRefGoogle Scholar
  49. McMullen, N. T., B. Goldberger, C. M. Suter, and E. M. Glaser (1988). Neonatal deafening alters non-pyramidal dendrite orientation in auditory cortex: A computer microscope study in the rabbit. J. Comp. Neurol. 267: 92–106.PubMedCrossRefGoogle Scholar
  50. Mannen, H., and Y. Sugiura (1975). Reconstruction of neurons of dorsal horn proper using Golgi-stained serial sections. J. Comp. Neurol. 168: 303–312.CrossRefGoogle Scholar
  51. Dierker, M. L. (1976b). An algorithm for the display and manipulation of lines in three dmensions. In: Computer Technology in Neuroscience ( P. B. Brown, ed.). Washington, DC: Hemisphere, pp. 139–151.Google Scholar
  52. Kropf, N., I. Sobel, and C. Levinthal (1985). Serial section reconstruction using CARTOS. In: The Microcomputer in Cell and Neurobiology Research ( R. R. Mize, ed.). New York: Elsevier, pp. 265–291Google Scholar
  53. Sobel, I., C. Levinthal, and E. R. Macagno (1980). Special techniques for the automatic computer reconstruction of neuronal structures. Annu. Rev. Biophys. Bioeng. 9: 347–362.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Joseph J. Capowski
    • 1
    • 2
  1. 1.Eutectic Electronics, Inc.RaleighUSA
  2. 2.The University of North CarolinaChapel HillUSA

Personalised recommendations