Ovarian Tumors, Stem Cells and Ontogeny: Imminentes Cognitiones

  • Waldemar A. Schmidt


Two fundamental and inextricably interrelated issues limit understanding of ovarian malignancy. Clinically, we can neither recognize early lesions nor ascertain their potential. Hence, ovarian cancer management depends upon a “recognition/classification” paradigm wherein tumor recognition, classification and therapy depends upon the morphology of advanced lesions. There is a parallel inability to fully describe the participants and processes of early ovarian development, making it impossible to definitively exclude one or more of the three major theories on the ontogeny of ovarian tissues (1,2). Models and methods used to explore these problems have serious limitations. In carcinogenesis the early lesions are yet to be defined, while in ovarian embryology the minuscule size of the tissues involved and the limited numbers of participating cells restrict research opportunities.


Granulosa Cell Ovarian Tumor Ascites Fluid Granulosa Cell Tumor Atretic Follicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Byskov AG. Differentiation of the mammalian embryonic gonad. Physiol Rev 1986; 6671–117.Google Scholar
  2. 2.
    Hamilton WJ, Mossman HW, eds. Human embryology; prenatal form and function. 4th ed. Cambridge: Heffer, 1972.Google Scholar
  3. 3.
    Pierce GB, Shikes R, Fink LM. Cancer, a problem of developmental biology. Englewood Cliffs: Prentice Hall, 1978.Google Scholar
  4. 4.
    Pierce GB. Neoplastic stem cells. In: Borek C, Fenoglio CM, King DW, eds. Cancer biology. IV. Differentiation and carcinogenesis. New York: Stratton Intercontinental Medical, 1977.Google Scholar
  5. 5.
    Rubin E, Farber JL. Neoplasia. In: Pathology. Philadelphia: WB Saunders, 1988.Google Scholar
  6. 6.
    Robbins SL, Cotran R, Kumar V. In: Pathology. Philadelphia: WB Saunders, 1984.Google Scholar
  7. 7.
    Meissner WA, Diamandopoulos G-T. Neoplasia. In: Anderson WAD, Kissane JM, eds. Pathology. 7th ed. St. Louis: CV Mosby, 1977.Google Scholar
  8. 8.
    Marchant J. Animal models for tumors of the female genital tract. In: Kurman RJ. Blaustein’s pathology of the female genital tract. 3rd ed. New York: Springer-Verlag, 1987:900–8.Google Scholar
  9. 9.
    Hillier SG, Zeleznik AJ, Knazek RA, Legallais FY, Rabson AS, Ross GT. Development of a hormonally-sensitive transplantable granulosa cell tumor. The Endocrine Society, Programs and Abstracts, 1978:344.Google Scholar
  10. 10.
    Zeleznik AJ, Hillier SG, Knazek RA, Ross GT, Coon HG. Production of long term steroid-producing granulosa cell cultures by cell hybridization. Endocrinology 1979; 105:156–62.PubMedCrossRefGoogle Scholar
  11. 11.
    Hillier SG, Knazek RA, Ross GT. Androgenic stimulation of progesterone production by granulosa cells from pre-antral follicles: further in vitro studies using replicate cell culture. Endocrinology 1977; 100:1539–49.PubMedCrossRefGoogle Scholar
  12. 12.
    Kolena J, Charming CP. Stimulatory effects of LH, FSH and prostaglandins upon cyclic 3′: 5′ AMP levels in porcine granulosa cells. Endocrinology 1972; 90:1543–50.PubMedCrossRefGoogle Scholar
  13. 13.
    Goff AK, Armstrong OT. Stimulatory action of gonadotropins and prostaglandins on adenosine 3′: 5′ monophosphate production by isolated rat granulosa cells. Endocrinology 1977; 101:1461–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Wolff J, Cook GH. Activation of steroidogenesis and adenylate cyclase by adenosine in adrenal and Leydig tumor cells. J Biol Chem 1977; 252:687–95.PubMedGoogle Scholar
  15. 15.
    Hillier SG, Zeleznik AJ, Ross GT. Independence of steroidogenic capacity and luteinizing hormone receptor induction in developing granulosa cells. Endocrinology 1978; 102:937–46.PubMedCrossRefGoogle Scholar
  16. 16.
    Schmidt WA, Ross GT. A hormonally responsive transplantable rat granulosa cell tumor. Lab Invest 1985; 52:59A.Google Scholar
  17. 17.
    Burghardt RC, personal communication, 1987.Google Scholar
  18. 18.
    Fitz TA, personal communication, 1987.Google Scholar
  19. 19.
    Pretlow TG, Weir EE, Zettergren JG. Problems connected with the separation of different kinds of cells. In: Richter GW, Epstein MA, eds. Int rev exp path; vol 14. New York: Academic Press, 1975.Google Scholar
  20. 20.
    Hamburger AW, Dunn FE, White CP. Percoli density gradient separation of cells from human malignant effusions. Br J Cancer 1985; 253–8.Google Scholar
  21. 21.
    Pertoft H, Laurent C. Sedimentation of cells in colloidal silica (Percoli). In: Pretlow TG, Pretlow TP, eds. Cell separation: methods and selected applications; vol 1. New York: Academic Press, 1982.Google Scholar
  22. 22.
    Buick RN, MacKillop WJ. Measurement of self-renewal in culture of clonogenic cells from human ovarian carcinoma. Br J Cancer 1981; 44:349–55.PubMedCrossRefGoogle Scholar
  23. 23.
    MacKillop WJ, Buick RN. Cellular heterogeneity in human ovarian carcinoma studied by density gradient centrifugation. Stem Cells 1981; 1:355–66.Google Scholar
  24. 24.
    Aberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular biology of the cells. New York: Garland Publishing, 1983:911.Google Scholar
  25. 25.
    Guraya SS. Histochemistry of the ovary. In: Motta PM, Hafez ESE, eds. Biology of the ovary. Boston: Martinus Nijhoff, 1980:33–51.CrossRefGoogle Scholar
  26. 26.
    Rutenberg AM, Hwakyu K, Fischbein JW, Hanker JS, Wasserkrug HJ, Seligman AM. Histochemical and ultrastructural demonstration of gamma-glutamyl transpeptidase activity. J Histochem Cytochem 1969; 17:517–26.CrossRefGoogle Scholar
  27. 27.
    Schulte BA, Poon KC, Rao KPP, Spicer SS. Lectin histochemistry of complex carbohydrates in human cervix. Histochem J 1985; 17:517–26.CrossRefGoogle Scholar
  28. 28.
    Schulte B A, Spicer SS. Light microscopic detection of sugar residues in glycocon-jugates of salivary glands and the pancreas with lectin-horseradish peroxidase conjugates. I. Mouse. Histochem J 1983; 15:1217–88.PubMedCrossRefGoogle Scholar
  29. 29.
    Arya M, Vanha-Perttula T. Distribution of lectin binding in rat testis and epididymis. Andrologia 1984; 16:495–508.PubMedCrossRefGoogle Scholar
  30. 30.
    Arya M, Vanha-Perttula T. Lectin staining of rat testis and epididymis: effect of cyproterone acetate and testosterone. Andrologia 1985; 17:301–10.PubMedCrossRefGoogle Scholar
  31. 31.
    Teshima S, Hirohashi S, Shimosato Y, et al. Histochemically demonstrable changes in cell surface carbohydrates of human germ cell tumors. Lab Invest 1984; 50:271–7.PubMedGoogle Scholar
  32. 32.
    Galfre G, Milstein C. Preparation of monoclonal antibodies: strategies and procedures. In: Langone JJ, Vunakis HV, eds. Methods in enzymology; vol 73, Part B. New York: Academic Press, 1981:3–46.Google Scholar
  33. 33.
    Fitz TA, Schmidt WA, Waiden TL, Winkel CA. Virus transformed rat granulosa cells: a model for the study of granulosa cell function. 6th Biennial Ovarian Workshop, Ithaca, 1986.Google Scholar
  34. 34.
    Fitz TA, Schmidt WA, Winkel CA. Steroidogenic capacity of transformed rat granulosa cells. Biol Reprod 1986; 34:86.Google Scholar
  35. 35.
    Wah RM, Fitz TA, Schmidt WA, Winkel CA. Progesterone synthesis in virus transformed granulosa cells. OB-GYN Armed Forces Meeting, San Diego, 1986.Google Scholar
  36. 36.
    Fitz TA, Wah RM, Schmidt WA, Winkel CA. Physiologic characterization of transformed and cloned granulosa cells. Biol Reprod 1988 (submitted).Google Scholar
  37. 37.
    Winkel CA, Marr MM, Fitz TA, Burghardt RC, Schmidt WA. Morphological and structural-functional characteristics of transformed rat granulosa cells: a model for study of immature granulosa cells. 1988 (in preparation).Google Scholar
  38. 38.
    Amsterdam A, Rotmensch S. Structure-function relationships during granulosa cell differentiation. Endocr Rev 1987; 8:309–37.PubMedCrossRefGoogle Scholar
  39. 39.
    Burghardt RC, Greenbaum IF, Kurten RC, Gaddy-Kurten D, Schmidt WA. Morphological properties of gap junctions in a transformed granulosa cell line. J Cell Biol 1986; 103:73A.Google Scholar
  40. 40.
    Marr MM, Waiden TL, Schmidt WA, Winkel CA, Fitz TA. Gap junctions in transformed rat granulosa cells. Third Annual Contractors Meeting for Biomedical and Materials Science Applications of Free Electron Lasers, Salt Lake City, 1988.Google Scholar
  41. 41.
    Osgood EE. A unifying concept of the etiology of the leukemias, lymphomas and cancers. J Natl Cancer Inst 1957; 18:155–66.PubMedGoogle Scholar
  42. 42.
    Osgood EE. The etiology of leukemias, lymphomas, and cancers. Geriatrics 1964; 19:208–21.PubMedGoogle Scholar
  43. 43.
    Zajicek G, personal communications, 1985.Google Scholar
  44. 44.
    Zajicek G. The histogenesis of glandular neoplasia. Med Hypotheses 1981; 7:1241–51.PubMedCrossRefGoogle Scholar
  45. 45.
    Zajicek G. Inflammation initiates cancer by depleting stem cells. Med Hypotheses 1985; 18:207–19.PubMedCrossRefGoogle Scholar
  46. 46.
    Zajicek G. Cancer is a metabolic deficiency. Med Hypotheses 1986; 21:105–15.PubMedCrossRefGoogle Scholar
  47. 47.
    Zajicek G. Proliferon: the functional unit of rapidly proliferating organs. Med Hypotheses 1979; 5:161–74.PubMedCrossRefGoogle Scholar
  48. 48.
    Zajicek G. The intestinal proliferon. J Theor Biol 1977; 67:515–21.PubMedCrossRefGoogle Scholar
  49. 49.
    Zajicek G, Michaeli Y, Regev J. On the progenitor cell migration velocity. Cell Tissue Kinet 1979; 12:453–60.PubMedGoogle Scholar
  50. 50.
    Quesenberry P, Levitt L. Hematopoietic stem cells. New Engl J Med 1979; 301:755–60, 819–23, 868–72.PubMedCrossRefGoogle Scholar
  51. 51.
    Sachs L. The molecular control of blood development. Science 1987; 238:1374–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Sachs L. Growth, differentiation and the reversal of malignancy. Sci Am 1986; 254:40–7.PubMedCrossRefGoogle Scholar
  53. 53.
    MacKillop WJ, Stewart SS, Buick RN. Density/volume analysis in the study of cellular heterogeneity in human ovarian carcinoma. Br J Cancer 1982; 45:812–20.PubMedCrossRefGoogle Scholar
  54. 54.
    MacKillop WJ, Trent JM, Stewart SS, Buick RN. Tumor progression studied by analysis of cellular features of serial ascitic ovarian tumors. Cancer Res 1983; 43:874–8.PubMedGoogle Scholar
  55. 55.
    Buick RN, Pullano R, Bizzari J-P, MacKillop WJ. The phenotypic heterogeneity of human ovarian tumor cells in relation to cell function. In: Burchiel SW, Rhodes BA, eds. Radioimmunimaging and radioimmunotherapy. New York: Elsevier Science Publishing, 1982:3–12.Google Scholar
  56. 56.
    MacKillop WJ, Ciampi A, Till JE, Buick RN. A stem cell model of human tumor growth: implications for tumor cell clonogenic assays. J Natl Cancer Inst 1983; 70:117–22.Google Scholar
  57. 57.
    Buick RN. Cell heterogeneity in human ovarian carcinoma. J Cell Physiol 1984; 3(suppl): 117–22.CrossRefGoogle Scholar
  58. 58.
    Zajicek G. The ideal human neoplasm. Med Hypotheses 1979; 5:1133–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Hirshfield AN, Schmidt WA. Kinetic aspects of follicular development in the rat. In: Mahesh VB, Dhindsa DS, Anderson E, Kalra S, eds. Regulation of ovarian and testicular function. Adv Exp Med Biol; vol 219. New York: Plenum Publishing, 1988.Google Scholar
  60. 60.
    Wheelock FF, Robinson MK. Endogenous control of the neoplastic process. Lab Invest 1983; 48:120–39.PubMedGoogle Scholar
  61. 61.
    Sachs L. Normal regulation, oncogenes and the reversibility of malignancy. Cancer Surveys 1984; 3:220–8.Google Scholar
  62. 62.
    Kaczmarek L. Protooncogene expression during the cell cycle. Lab Invest 1986; 54:365–76.PubMedGoogle Scholar
  63. 63.
    Stiles CD. The biological role of oncogenes—insights from platelet-derived growth factor. Cancer Res 1985; 45:5215–8.PubMedGoogle Scholar
  64. 64.
    Weinberg RA. The action of oncogenes in the cytoplasm and nucleus. Science 1985; 230:770–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Taylor-Papadimitriou J, Purkis P, Lane EB, McKay I, Chang S. Effects of SV40 transformation on the cytoskeleton and behavioural properties of human keratinocytes. Cell Differ 1982; 11:169–80.PubMedCrossRefGoogle Scholar
  66. 66.
    Hronis TS, Steinberg ML, Defendi V, Sun T-T. Simple epithelial nature of some simian virus 40-transformed human epidermal keratinocytes. Cancer Res 1984; 44:5797–804.PubMedGoogle Scholar
  67. 67.
    Bernard B, Robinson SM, Semat A, Darmon M. Reexpression of fetal characters in simian virus 40-transformed human keratinocytes. Cancer Res 1985; 45:1707–16.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Waldemar A. Schmidt
    • 1
  1. 1.Department of Pathology and Laboratory MedicineUniversity of Texas Medical School-HoustonUSA

Personalised recommendations