Role of Second Messengers in Early Differentiation of Gonads and Sex Ducts

  • Anne Grete Byskov
  • Hanne Tinggaard
  • Claus Yding Andersen


The phenotypic sex develops as a result of gonadal differentiation, which again usually reflects the genetic sex. In spite of numerous studies, the mechanisms which control gonadal sex differentiation are still not clear. Neither sex steroids nor gonadotropins direct the process (1). Specific gene products of the Y-chromosome have been proposed to control testicular differentiation, e.g., the HY-antigen (histocompatability Y-antigen) (2) and the TDF (testis determining factor) (3).


Germ Cell Adenylate Cyclase Fetal Mouse Pachytene Stage Wolffian Duct 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Byskov AG. Differentiation of mammalian embryonic gonad. Physiol Rev 1986; 66:71–117.PubMedGoogle Scholar
  2. 2.
    Wachtel SS. H-Y antigen in gonadal differentiation. In: Austin CR, Edwards RG, eds. Mechanisms of sex differentiation in animals and man. London, New York: Academic Press, 1981:255–99.Google Scholar
  3. 3.
    Page DC, Mosher R, Simpson EM, et al. The sex-determining region of the human Y chromosome encodes a finger protein. Cell 1987; 51:1091–1104.PubMedCrossRefGoogle Scholar
  4. 4.
    Byskov AG. Regulation of meiosis in mammals. Ann Biol Anim Biochem Biophys 1979;19:1251–61.CrossRefGoogle Scholar
  5. 5.
    Fajer AB, Schneider J, McCall D, Ances IG, Polakis SE. The induction of meiosis by ovaries of newborn hamsters and its relation to the action of the extraovarian structures in the mesovarium (rete ovarii). Ann Biol Anim Biochem Biophys 1979; 19:1273–8.CrossRefGoogle Scholar
  6. 6.
    Westergaard LG. Intrafollicular factors regulating human ovarian follicular development and oocyte maturation. Dan Med Bull 1988 (in press).Google Scholar
  7. 7.
    Taketo T, Thau RB, Adeyemo O, Koide SS. Influence of adenosine 3’:5’-cyclic monophosphate analogues on testicular organization of fetal mouse gonads in vitro. Biol Reprod 1984; 30:189–98.PubMedCrossRefGoogle Scholar
  8. 8.
    Magre S, Agelopoulou R, Jost A. Action du serum de veau sur la differenciation in vitro on le maintien des cordon seminiferes du testicule du faetus du rat. C R Acad Sci (Paris) 1981; 292:85–9.Google Scholar
  9. 9.
    Agelopoulou R, Magre S, Patsavoudi E, Jost A. Initial phases of the rat testis differentiation in vitro. J Embryol Exp Morphol 1984; 83:15–31.PubMedGoogle Scholar
  10. 10.
    Byskov AG, Fenger M, Hansen JL, Husum I, Bagger P. Second messengers in control of onset of meiosis in fetal mice. 1988 (submitted).Google Scholar
  11. 11.
    Daly JW. Forskolin, adenylate cyclase, and cell physiology: an overview. In: Greengard P, ed. Advances in cyclic nucleotide and protein phosphorylation research. New York: Raven Press, 1984:81–9.Google Scholar
  12. 12.
    Joso N, Picard J-Y. Anti-Mullerian hormone. Physiol Rev 1986; 66:1038–90.Google Scholar
  13. 13.
    Drummond AH, Joels LA, Hughes PJ. The interaction of lithium ions with lipid signalling systems. Biochem Soc Trans 1987; 15:32–5.PubMedGoogle Scholar
  14. 14.
    Mork A, Geisler A. Mode of action of lithium on the catalytic unit of adenylate cyclase from rat brain. Pharmacol Toxicol 1987; 60:241–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Tomooka Y, Imagawa W, Nandi S, Bern HA. Growth effect of lithium on mouse mammary epithelial cells in serum-free collagen gel culture. J Cell Physiol 1983; 117:290–6.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Anne Grete Byskov
    • 1
  • Hanne Tinggaard
    • 1
  • Claus Yding Andersen
    • 1
  1. 1.Lababoratory of Reproductive Biology IIDepartment of Obstetrics and GynecologyCopenhagenDenmark

Personalised recommendations