Light and Electron Microscope Immunocytochemical Localization of Epidermal Growth Factor Receptors in Bovine Corpora Lutea of Pregnancy

  • N. Chegini
  • Z. M. Lei
  • C. V. Rao


Both luteal and nonluteal cells, i.e., macrophages, fibroblasts, vascular smooth muscle and endothelium, contain EGF receptors. Small luteal and nonluteal cells, however, contain more receptors than large luteal cells. The nuclei of both luteal and nonluteal cells also seem to contain EGF receptors. However, the pattern of nuclear receptor distribution differed with the receptor antibodies specific to the carbohydrate moiety and the binding sites on the extracellular domain of EGF receptor molecules. At the electron microscope level using the receptor antibody specific to the carbohydrate moiety, EGF receptors were found not only in plasma membranes, but also in rough endoplasmic reticulum, lysosomal vesicles, mitochondria and nuclei. The nuclear receptors are associated with nuclear membranes, condensed chromatin and the border between the condensed and dispersed chromatin. In conclusion, our results suggest that EGF may have steroidogenic and nonsteroidogenic roles in bovine corpora lutea and that transduction of EGF signals may also involve nuclear receptors.


Granulosa Cell Corpus Luteum Receptor Antibody Carbohydrate Moiety Luteal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carpenter G, Cohen S. Epidermal growth factor. Annu Rev Biochem 1979; 48:193–216.PubMedCrossRefGoogle Scholar
  2. 2.
    Gospodarowicz D, Bialecki H. Fibroblast and epidermal growth factors are mitogenic agents for cultured granulosa cells of rodent, porcine and human origin. Endocrinology 1979; 104:757–64.PubMedCrossRefGoogle Scholar
  3. 3.
    Hsueh AJW, Welsh TH, Jones PBC. Inhibition of ovarian and testicular steroidogenesis by epidermal growth factor. Endocrinology 1981; 108:2002–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Erickson GF, Case E. Epidermal growth factor antagonizes ovarian theca-interstitial cytodifferentiation. Mol Cell Endocrinol 1983; 31:71–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Vlodavsky I, Brown KD, Gospodarowicz D. A comparison of the binding of epidermal growth factor to cultured granulosa and luteal cells. J Biol Chem 1978; 253:3744–50.PubMedGoogle Scholar
  6. 6.
    Mock EJ, Niswender GD. Differences in the rates of internalization of I-labeled chorionic gonadotropin, luteinizing hormone and epidermal growth factor by ovine luteal cells. Endocrinology 1983; 113:259–64.PubMedCrossRefGoogle Scholar
  7. 7.
    Homm RJ, Osuampke CO, Rao CV, Sanfilippo JS. Epidermal growth factor binding to human ovaries. Fertil Steril 1984; 41:75.Google Scholar
  8. 8.
    Chabot J-G, StArnaud R, Walker P, Pelletier G. Distribution of epidermal growth factor receptors in the rat ovary. Mol Cell Endocrinol 1986; 44:99–108.PubMedCrossRefGoogle Scholar
  9. 9.
    Ayyagari RR, Khan-Dawood FS. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics. Am J Obstet Gynecol 1987; 156:942–6.PubMedGoogle Scholar
  10. 10.
    Chegini N, Ramani N, Rao CV. Morphological and biochemical characterization of small and large bovine luteal cells during pregnancy. Mol Cell Endocrinol 1984; 37:89–102.PubMedCrossRefGoogle Scholar
  11. 11.
    Savion N, Vlodavsky I, Gospodarowicz D. Nuclear accumulation of epidermal growth factor in cultured bovine corneal endothelial and granulosa cells. J Biol Chem 1981; 256:1149–54.PubMedGoogle Scholar
  12. 12.
    Lev-Ran A, Hwang D, Josefsberg Z, et al. Binding of epidermal growth factor and insulin to human liver microsomes and Golgi fractions. Biochem Biophys Res Commun 1984;119:1181–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Ramani N, Chegini N, Rao CV, Woost PG, Schultz GS. The presence of epidermal growth factor binding sites in the intracellular organelles of term human placenta. J Cell Sci 1986; 84:19–40.PubMedGoogle Scholar
  14. 14.
    Rakowicz-Szulczynska EM, Rodeck U, Herlyn M, Koprowski H. Chromatin binding of epidermal growth factor and platelet derived growth factor in cells bearing the appropriate receptors. Proc Natl Acad Sci USA 1986; 83:3728–32.PubMedCrossRefGoogle Scholar
  15. 15.
    Lai WH, Guyada HJ, Bergeron JJM. Binding and internalization of epidermal growth factor in human term placental cells in culture. Endocrinology 1986; 118:413–23.PubMedCrossRefGoogle Scholar
  16. 16.
    Schindler M, Jiang L-N. Epidermal growth factor and insulin stimulate nuclear pore-mediated macromolecular transport in isolated rat liver nuclei. J Cell Biol 1987; 104:849–53.PubMedCrossRefGoogle Scholar
  17. 17.
    Raper SE, Burwen SJ, Barker ME, Jones AL. Translocation of epidermal growth factor to the hepatocyte nucleus during rat liver regeneration. Gastroenterology 1987; 92:1243–50.PubMedGoogle Scholar
  18. 18.
    Green MR, Mycock C, Smith CG, Couchman JR. Biochemical and ultrastructural processing of [I]epidermal growth factor in rat epidermis and hair follicles: accumulation of nuclear label. J Invest Dermatol 1987; 88:259–65.PubMedCrossRefGoogle Scholar
  19. 19.
    Yarden Y, Harari I, Schlessinger J. Purification of an active EGF receptor kinase with monoclonal antireceptor antibodies. J Biol Chem 1985; 260:315–9.PubMedGoogle Scholar
  20. 20.
    Koay ES, Bagnell CA, Bryant-Greenwood GD, Lord SB, Cruz AC, Larkin LH. Immunocytochemical localization of relaxin in human decidua and placenta. J Clin Endocrinol Metab 1985; 60:859–63.PubMedCrossRefGoogle Scholar
  21. 21.
    Chegini N, Rao CV. Quantitative electron microscope autoradiographic studies on I-epidermal growth factor internalization in term human placenta. J Cell Sci 1986; 84:41–52.PubMedGoogle Scholar
  22. 22.
    Bendayan M. Ultrastructural localization of nucleic acids by the use of enzyme-gold complexes. J Histochem Cytochem 1981; 29:531–41.PubMedCrossRefGoogle Scholar
  23. 23.
    Carpentier J-L, Rees AR, Gregoriou M, Kris R, Schlessinger J, Orci L. Subcellular distribution of the external and internal domains of the EGF receptor in A-431 cells. Exp Cell Res 1986; 166:312–26.PubMedCrossRefGoogle Scholar
  24. 24.
    Fakan S, Puvion E. The ultrastructural visualization of nucleolar and extranucleolar RNA synthesis and distribution. Int Rev Cytol 1980; 65:255–99.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • N. Chegini
    • 1
  • Z. M. Lei
    • 1
  • C. V. Rao
    • 1
  1. 1.Department of Obstetrics/Gynecology, School of MedicineUniversity of LouisvilleLouisvilleUSA

Personalised recommendations