The Insulin-Like Growth Factor-II/Mannose 6-Phosphate Receptor

  • Peter Nissley
  • Wieland Kiess
  • Mark Sklar

Abstract

Competitive binding experiments first demonstrated that insulin-like growth factor (IGF) receptors are distinct from insulin receptors and that there are two IGF receptors based on relative preference for IGF-I, IGF-II, and insulin1. The IGF-I receptor or type I IGF receptor binds IGF-I with higher affinity than IGF-II, and binds insulin with much lower affinity than IGF-II. The IGF-II receptor or type II IGF receptor binds IGF-II with considerably higher affinity than IGF-I and does not bind insulin at all. The structures of these two IGF receptors were defined by affinity crosslinking, biosynthetic labeling, purification, and finally, molecular cloning2–5. The IGF-I receptor is very similar to the insulin receptor, consisting of two alpha subunits of 130 kDa, and two beta subunits of 95 kDa. The beta subunit has intrinsic tyrosine kinase activity which is activated by autophosphorylation following ligand binding to the alpha subunit. The structure of the IGF-II receptor is quite different from the structure of the IGF-I receptor. The IGF-II receptor is a single 250 kDa glycoprotein which lacks tyrosine kinase activity.

Keywords

Tyrosine Cysteine Electrophoresis Serine Polyacrylamide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. M. Rechter and S. P. Nissley, The nature and regulation of the receptors for insulinlike growth factors, Ann. Rev. Physiol. 47:425 (1985).CrossRefGoogle Scholar
  2. 2.
    A. Ullrich, A. Gray, A.W. Tarn, T. Yang-Feng, M. Tsubokawa, C. Collins, W. Henzel, T. Le Bon, S. Kathuria, E. Chen, S. Jacobs, U. Frank, J. Ramachandran, and Y. Fujita-Yamaguchi, Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity, EMBO J. 5:2503 (1986).PubMedGoogle Scholar
  3. 3.
    D. O. Morgan, J. C. Edman, D. N. Standring, V. A. Fried, M. C. Smith, R. A. Roth, and W. J. Rutter, Insulin-like growth factor II receptor as a multifunctional binding protein, Nature 329:301 (1987).PubMedCrossRefGoogle Scholar
  4. 4.
    P. Lobel, N. M. Dahms, and S. Kornfeld, Cloning and sequence analysis of the cation-independent mannose 6-phosphate receptor, J. Biol. Chem. 263: 2563 (1988).PubMedGoogle Scholar
  5. 5.
    A. Oshima, C. M. Nolan, J. W. Kyle, J. H. Grubb, and W. S. Sly, The human cation-independent mannose 6-phosphate receptor. Cloning and sequence of the full-length cDNA and expression of functional receptor in cos cells, J. Biol. Chem. 263: 2553 (1988).PubMedGoogle Scholar
  6. 6.
    R. G. MacDonald, S. R. Pfeffer, L. Coussens, M. A. Tepper, C. M. Brocklebank, J. E. Mole, J. K. Anderson, E. Chen, M. P. Czech, and A. Ullrich, A single receptor binds both insulin-like growth factor II and mannose 6-phosphate, Science 239:1134 (1988).PubMedCrossRefGoogle Scholar
  7. 7.
    R. A. Roth, C. Stover, J. Hari, D. O. Morgan, M. C. Smith, V. Sara, and V. A. Fried, Interactions of the receptor for insulin-like growth factor II with mannose-6-phosphate and antibodies to the mannose-6-phosphate receptor, Biochem. Biophys. Res. Commun. 149: 600 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    W. Kiess, G. D. Blickenstaff, M. M. Sklar, C. L. Thomas, S. P. Nissley, and G. G. Sahagian, Biochemical evidence that the type II insulin-like growth factor receptor is identical to the cation-independent mannose 6-phosphate receptor, J. Biol. Chem. 263:9399 (1988).Google Scholar
  9. 9.
    P. Y. Tong, S. E. Tollefsen, and S. Kornfeld, The cation-independent mannose 6-phosphate receptor binds insulin-like growth factor II, J. Biol. Chem. 263: 2585 (1988)PubMedGoogle Scholar
  10. 10.
    T. Braulke, C. Causin, A. Waheed, U. Junghans, A. Hasilik, P. Maly, R. E. Humbel, and K. von Figura, Mannose 6-phosphate/insulin-like growth factor II receptor: distinct binding sites for mannose 6-phosphate and insuin-like growth factor II, Biochem. Biophys. Res. Commun. 150: 1287 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    S. P. Nissley, W. Kiess, C. Thomas, M. Sklar, and G. G. Sahagian, Lysosomal enzymes inhibit binding of insulin-like growth factor II (IGF-II) to the IGF-II/Mannose-6-phosphate receptor, J. Cell Biol. 107: 704a (1989).Google Scholar
  12. 12.
    G. D. Blickenstaff, G. Terres, and G. G. Sahagian, Insulin-like growth factor II (IGF-II) and lysosomal enzymes bind to distinct but interacting sites on the mannose 6-phosphate (Man-6-P)/IGF-II receptor, J. Cell Biol. 107:62a (1989).Google Scholar
  13. 13.
    A. Waheed, T. Braulke, U. Junghans, and K. von Figura, Mannose 6-phosphate/insulin like growth factor II receptor: the two types of ligands bind simultaneously to one receptor at different sites, Biochem. Biophys. Res. Commun. 152:1248 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    K. von Figura and A. Hasilik, Lysosomal enzymes and their receptors, Ann. Rev. Biochem. 55:167(1986)CrossRefGoogle Scholar
  15. 15.
    S. Kornfeld, Trafficking of lysosomal enzymes, FASEB J. 1:462 (1987)PubMedGoogle Scholar
  16. 16.
    S. R. Pfeffer, Mannose 6-phosphate receptors and their role in targeting proteins to lysosomes, J. Membrane Biol. 103:7 (1988).CrossRefGoogle Scholar
  17. 17.
    G. Griffiths, B. Hoflack, K. Simons, I. Mellman, and S. Kornfeld, The mannose 6-phosphate receptor and the biogenesis of lysosomes, Cell 52:329 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    N. M. Dahms, P. Lobel, J. Breitmeyer, J.M. Chirgwin, and S. Kornfeld, 46 kd mannose 6-phosphate receptor: cloning, expression, and homology to the 215 kd mannose 6-phosphate receptor, Cell 50:181 (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    R. Pohlmann, G. Nagel, B. Schmidt, M. Stein, G. Lorkowski, C. Krentler, J. Cully, H. E. Meyer, K-H Grzeschik, G. Mersmann, A. Hasilik, and K. von Figura, Cloning of a cDNA encoding the human cation-dependent mannose 6-phosphate-specific receptor, Proc. Natl. Acad. Sci. USA. 84:5575 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    J. S. Flier, P. Usher, and A. C. Moses, Monoclonal antibody to the type I insulin-like growth factor (IGF-I) receptor blocks IGF-I receptor-mediated DNA synthesis: clarification of the mitogenic mechanisms of IGF-I and insulin in human skin fibroblasts, Proc. Natl. Acad. Sci. USA 83:664 (1986).PubMedCrossRefGoogle Scholar
  21. 21.
    J. J. Van Wyk, D. C. Graves, S. J. Casella, and S. Jacobs, Evidence from monoclonal antibody studies that insulin stimulates deoxyribonucleic acid synthesis through the type I somatomedin receptor, J. Clin. Endocrinol. Metab. 61:639 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    C. A. Conover, P. Misra, R. L. Hintz, and R. G. Rosenfeld, Effect of an anti-insulinlike growth factor I receptor antibody on insulin-like growth factor II stimulation of DNA synthesis in human fibroblasts, Biochem. Biophys Res. Commun. 139:501 (1986).PubMedCrossRefGoogle Scholar
  23. 23.
    R. W. Furlanetto, J. N. DiCarlo, and C. Wisehart, The type II insulin-like growth factor receptor does not mediate deoxyribonucleic acid synthesis in human fibroblasts, J. Clin. Endocrinol. Metab. 64:1142 (1987).PubMedCrossRefGoogle Scholar
  24. 24.
    C. Mottola and M. P. Czech, The type II insulin-like growth factor receptor does not mediate increased DNA synthesis in H-35 hepatoma cells, J. Biol. Chem. 259:12705 (1984).PubMedGoogle Scholar
  25. 25.
    W. Kiess, J. F. Haskell, L. Lee, L. A. Greenstein, B. E. Miller, A. L. Aarons, M. M. Rechler, and S. P. Nissley, An antibody that blocks insulin-like growth factor (IGF) binding to the type II IGF receptor is neither an agonist nor an inhibitor of IGF-stimulated biologic responses in L6 myoblasts, J. Biol. Chem. 262:12745 (1987).PubMedGoogle Scholar
  26. 26.
    M. R. Hammerman and J. R. Gavin, Binding of insulin-like growth factor II and multiplication-stimulating activity-stimulated phosphorylation in basolateral membranes from dog kidney, J. Biol. Chem. 259:13511 (1984).PubMedGoogle Scholar
  27. 27.
    J. Mellas, J. R. Gavin, and M. R. Hammerman, Multiplication-stimulating activity-induced alkalinization of canine renal proximal tubular cells, J. Biol. Chem. 261:14437 (1986).PubMedGoogle Scholar
  28. 28.
    S. A. Rogers, and M. R. Hammerman, Insulih-like growth factor II stimulates production of inositol trisphosphate in proximal tubular basolateral membranes from dog kidney, Proc. Natl. Acad. Sci. USA 85:4037 (1988).PubMedCrossRefGoogle Scholar
  29. 29.
    E. J. Verspohl, R. A. Roth, R. Vigneri, and I. D. Goldfine, Dual regulation of glycogen metabolism by insulin and insulin-like growth factors in human hepatoma cells (HEP-G2), J. Clin. Invest. 74:1436 (1984).PubMedCrossRefGoogle Scholar
  30. 30.
    J. Hari, S. B. Pierce, D. O. Morgan, V. Sara, M. C. Smith, and R. A. Roth, The receptor for insulin-like growth factor II mediates an insulin-like response, EMBO J. 6:3367 (1987).PubMedGoogle Scholar
  31. 31.1.
    Nishimoto, Y. Hata, E. Ogata, and I. Kojima, Insulin-like growth factor II stimulates calcium influx in competent BALB/c 3T3 primed with epidermal growth factor, J. Biol. Chem. 262:12120 (1987).PubMedGoogle Scholar
  32. 32.
    I. Kojima, I. Nishimoto, T. Iiri, E. Ogata, and R. Rosenfeld, Evidence that type II insulin-like growth factor receptor is coupled to calcium gating system, Biochem. Biophys. Res. Commun. 154:9 (1988).PubMedCrossRefGoogle Scholar
  33. 33.
    I. Nishimoto, E. Ogata, and I. Kojima, Pertussis toxin inhibits the action of insulin-like growth factor-I, Biochem Bipophvs. Res. Commun. 148:403 (1987).CrossRefGoogle Scholar
  34. 34.
    M. Tally, C. H. Li, and K. Hall, IGF-2 stimulated growth mediated by the somatomedin type 2 receptor, Biochem. Biophvs. Res. Commun. 148:811 (1987).CrossRefGoogle Scholar
  35. 35.
    M. M. Blanchard, B. Barenton, A. Sullivan, B. Foster, H. H. Guyda, and B. I. Posner, Characterization of the insulin-like growth factor (IGF) receptor in K562 erythroleukemia cells; evidence for a biological function for the type II IGF receptor, Molec. Cell. Endocrinol. 56:235 (1988).PubMedCrossRefGoogle Scholar
  36. 36.
    N. Hizuka, I. Sukegawa, K. Takano, K. Asakawa, R. Horikawa, T. Tsushima, and K. Shizume, Characterization of insulin-like growth factor I receptors on human erythroleukemia cell line (K-562 cells), Endocrinol. Japon. 34:81 (1987).CrossRefGoogle Scholar
  37. 37.
    R. L. Hintz, A. V. Thorsson, G. Enberg, and K. Hall, IGF-II binding on human lymphoid cells: demonstration of a common high affinity receptor for insulin like peptides, Biochem. Biophvs. Res. Commun. 118:774 (1984).CrossRefGoogle Scholar
  38. 38.
    P. Misra, R. L. Hintz, and R. G. Rosenfeld, Structural and immunological characterization of insulin-like growth factor II binding to IM-9 cells, J. Clin. Endocrinol. Metab, 63:1400 (1986).PubMedCrossRefGoogle Scholar
  39. 39.
    S. J. Casella, V. K. Han, A. J. D’Ercole, M. E. Svoboda, and J. J. Van Wyk, Insulinlike growth factor II binding to the type I somatomedin receptor, J. Biol. Chem. 261:9268 (1986).PubMedGoogle Scholar
  40. 40.
    C. Polychronakos, H. J. Guyda, and B. I. Posner, Mannose-6-phosphate increases the affinity of its cation-independent receptor for insulin-like growth factor II by displacing inhibitory endogenous ligands, Biochem. Biophys. Res. Commun. 157:632 (1988).PubMedCrossRefGoogle Scholar
  41. 41.
    W. Kiess, C. L. Thomas, L. A. Greenstein, L. Lee, M. M. Sklar, M. M. Rechler, G. G. Sahagian, and S. P. Nissley, Insulin-like growth factor-II (IGF-II) inhibits both the cellular uptake of β-galactosidase and the binding of β-galactosidase to purified IGF-II/mannose 6-phosphate receptor, J. Biol. Chem. 264:4710 (1989).PubMedGoogle Scholar
  42. 42.
    A. C. Moses, S. P. Nissley, P. A. Short, M. M. Rechler, R. M. White, A. B. Knight, and O. Z. Higa, Increased levels of multiplication-stimulating activity, an insulin-like growth factor, in fetal rat serum, Proc. Natl. Acad. Sci. USA 77:3649 (1980).PubMedCrossRefGoogle Scholar
  43. 43.
    A. L. Brown, D. E. Graham, S. P. Nissley, D. J. Hill, A. J. Strain, and M. M. Rechler, Developmental regulation of insulin-like growth factor II mRNA in different rat tissues, J. Biol Chem. 261:13144 (1986).PubMedGoogle Scholar
  44. 44.
    M. M. Sklar, W. Kiess, C. L. Thomas, L. Lee, and S. P. Nissley, Developmental expression of tissue insulin-like growth factor-II (IGF-II)/mannose-6-phosphate (M6P) receptor in the rat. Measurement by quantitative immunoblotting, J. Biol. Chem. in press (1989).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Peter Nissley
    • 1
  • Wieland Kiess
    • 1
  • Mark Sklar
    • 1
  1. 1.Endocrinology Section, Metabolism Branch, National Cancer InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations