Advertisement

Structural Basis for Ligand-Dependent Transmembrane Signalling of the Insulin and IGF-1 Receptor Kinases

  • Jeffrey E. Pessin
  • Judith L. Treadway

Abstract

Insulin and IGF-1 modulate a number of acute metabolic and long term growth-related responses in target cells (for several comprehensive reviews see Refs. 1–11). The initial requisite for these insulin and IGF-1 dependent biological responses is the presence of specific high affinity receptor proteins capable of transducing the cell surface binding events into an intracellular signal. A key issue fundamental to all plasma membrane receptor-mediated events is the understanding of the molecular mechanisms responsible for the flow of information across the phospholipid bilayer. An implicit assumption is that the receptor complexes themselves contain the necessary structural information to transmit the extracellular binding event to a recognizable intracellular signal, namely activation of tyrosine-specific protein kinase activity. Thus, a detailed understanding of the molecular properties of these receptor species is central in elucidating the ligand-dependent transmembrane signalling mechanism responsible for the pleiotrophic responses to hormone binding. We emphasize that although many investigators use the term transmembrane signalling in reference to the generation of second messengers and different receptor-mediated biological responses, we will use this term exclusively to refer to the ability of ligand binding to propagate an intramolecular transmembrane signal within the holoreceptor molecule itself.

Keywords

Insulin Receptor Protein Kinase Activity Insulin Binding Transmembrane Signalling Receptor Protein Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. P. Nissley and M. M. Rechler, Somatomedian/Insulin-like growth factor tissue receptors, Clin. Endo. Metab. 13:43 (1984).CrossRefGoogle Scholar
  2. 2.
    R. M. Bala, B. Baumick, G. H. Armstrong and M. D. Hollenberg, Receptors for insulin-like growth factors: basic somatomedin receptors in human and rodent tissues, in: “Insulin-like Growth Factors/ Somatomedins,” E. M. Spencer, ed., Walter de Gruyter, Berlin (1983).Google Scholar
  3. 3.
    E. R. Froesch, C. Schmid, J. Schwander and J. Zapf, Actions of insulin-like growth factors, Annu. Rev. Phvsio1. 47:443 (1985).CrossRefGoogle Scholar
  4. 4.
    S. Jacobs and P. Cuatrecasas, Insulin receptor: structure and function, Endocr. Rev. 2:251 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    C. R. Kahn, The molecular mechanism of insulin action, Annu. Rev. Med. 36:429 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    M. P. Czech, Insulin action and regulation of hexose transport, Diabetes 29:399 (1980).PubMedGoogle Scholar
  7. 7.
    I.D. Goldfine, Effects of insulin on intracellular functions, in: “Biochemical Actions of Hormones,” G. Litwack ed., Vol 8, Academic Press, NY (1981).Google Scholar
  8. 8.
    M. P. Czech, The nature and regulation of the insulin receptor: structure and function, Annu. Rev. Physio1. 47:357 (1985).CrossRefGoogle Scholar
  9. 9.
    I.D. Goldfine, The insulin receptor: molecular biology and transmembrane signaling, Endo. Rev. 8:235 (1987).CrossRefGoogle Scholar
  10. 10.
    S. Jacobs and P. Cuatrecasas, Insulin receptors, Annu. Rev. Pharmacol. Toxicol. 23:461 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    M. M. Rechler and S. P. Nissley, The nature and regulation of the receptors for insulin-like growth factors, Annu. Rev. Physio1. 47:425 (1985).CrossRefGoogle Scholar
  12. 12.
    A. Ullrich, J. R. Bell, E. Y. Chen, R. Herrera, L. M. Petruzzelli, T. J. Dull, A. Gray, L. Coussens, Y.-C. Liao, M. Tsubokawa, A. Mason, P. H. Seeburg, C. Grunfeld, O. M. Rosen and J. Ramachandran, Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes, Nature (London) 313:756 (1985).CrossRefGoogle Scholar
  13. 13.
    A. Ullrich, A. Gray, A. W. Tam, T. Yang-Fang, M. Tsubokawa, C. Collins, W. Henzel, T. R. LeBon, S. Kathuria, E. Chen, S. Jacobs, U. Francke, J. Ramachandran and Y. Fugita-Yamaguchi, Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity, EMBO J. 5:2503 (1986).PubMedGoogle Scholar
  14. 14.
    Y. Ebina, L. Ellis, K. Jarnagin, M. Edery, L. Graf, E. Clauser, J. H. Ou, F. Maslarz, Y. W. Kan, I. D. Goldfine, R.A. Roth and W. J. Rutter, The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling, Cell 40:747 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    E. Van Obberghen, M. Kasuga, M. LeCam, J. A. Hedo, A. Itin and L. C. Harrison, Biosynthetic labeling of insulin receptor studies of subunits in cultured human IM-9 lymphocytes, Proc. Natl. Acad. Sci. USA 78:1052 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    J. Forsayeth, B. Maddux and I. D. Goldfine, Biosynthesis and processing of the human insulin receptor, Diabetes 35:837 (1986).PubMedCrossRefGoogle Scholar
  17. 17.
    J. A. Hedo, M. Kasuga, E. Van Obberghen, J. Roth and C. R. Kahn, Direct demonstration of glycosylation of insulin receptor subunits by biosynthetic and external labeling evidence for heterogeneity, Proc. Natl. Acad. Sci. USA 78:4791 (1981).PubMedCrossRefGoogle Scholar
  18. 18.
    G. V. Ronnett, V. P. Knutson, R. A. Kohanski, T. L. Simpson and M. D. Lane, Role of glycosylation in the processing of newly translated inulsin proreceptor in 3T3-L1 adipocytes, J. Biol. Chem. 259:4566 (1984).PubMedGoogle Scholar
  19. 19.
    S. Jacobs, F. C. Kull, Jr. and P. Cuatrecasas, Monensin blocks the maturation of receptors for insulin and somatomedin C: identification of receptor precursors, Proc. Natl. Acad. Sci. USA 80:1228 (1983).PubMedCrossRefGoogle Scholar
  20. 20.
    P. J. Deutsch, C. F. Wan, O. M. Rosen and C. S. Rubin, Latent insulin receptors and possible receptor precursors in 3T3L-1 adipocytes, Proc. Natl. Acad. Sci. USA 80:133 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    J. A. Hedo, E. Collier and A. Watkinson, Myristyl and palmityl acylation of the insulin receptor, J. Biol. Chem. 262:954 (1987).PubMedGoogle Scholar
  22. 22.
    P. F. Pilch, T. O’Hare, J. Rubin and M. Boni-Sehnetzler, The ligand binding subunit of the insulin-like growth factor 1 receptor has properties of a peripheral membrane protein, Biochem. Biophys. Res. Commun. 136:45 (1986).CrossRefGoogle Scholar
  23. 23.
    C. Grunfeld, J. K. Shigenaga and J. Ramachandran, Urea treatment allows dithiothreitol to release the binding subunit of the insulin receptor from the cell membrane: implications for the structural organization of the insulin receptor, Biochem. Biophys. Res. Commun. 113:389 (1985).CrossRefGoogle Scholar
  24. 24.
    J. L. Goldstein, M. S. Brown, R. G. Anderson, D. W. Rüssel and W. J. Schneider, Receptor-mediated endocytosis: concepts emerging from the LDL receptor system, in: “Annual Review of Cell Biology,” G. E. Palade, ed., Vol 1, Annual Reviews Inc., Palo Alto (1985).Google Scholar
  25. 25.
    S. M. Waugh, E. E. DiBella and P. F. Pilch, Isolation of a proteolytically derived domain of the insulin receptor containing the major site of crosslinking/binding, Biochemistry in press (1989).Google Scholar
  26. 26.
    J. Massague and M. P. Czech, Role of disulfides in the subunit structure of the insulin receptor, J. Biol. Chem. 257:6729 (1982).PubMedGoogle Scholar
  27. 27.
    L. J. Sweet, P. A. Wilden and J. E. Pessin, Dithiothreitol activation of the insulin receptor/kinase does not involve subunit dissociation of the native α 2 β 2 insulin receptor subunit complex, Biochemistry 25:7068 (1986).PubMedCrossRefGoogle Scholar
  28. 28.
    R. A. Roth and D. J. Cassell, Insulin receptor: evidence that it is a protein kinase, Science (Washington. P.C.) 219:299 (1983).CrossRefGoogle Scholar
  29. 29.
    M. A. Shia and P. F. Pilch, The β subunit of the insulin receptor is an insulin-activated protein kinase, Biochemistry 22:717 (1983).PubMedCrossRefGoogle Scholar
  30. 30.
    E. Van Obberghen, B. Rossi, A. Kowalski, H. Gazzano and G. Ponzio, Receptor-mediated phosphorylation o fthe hepatic insulin receptor: evidence that the Mr 95,000 receptor subunit is its own kinase, Proc. Natl. Acad. Sci. USA 80:945 (1983).PubMedCrossRefGoogle Scholar
  31. 31.
    H. E. Tornqvist, M. W. Pierce, A. R. Frackelton, R. A. Nemenoff and J. Avruch, Identification of insulin receptor tyrosine residues phosphorylated in vitro, J. Biol. Chem. 262:10212 (1987).PubMedGoogle Scholar
  32. 32.
    H. E. Tornqvist, J. R. Gunsalus, R. A. Nemenoff, A. R. Frackelton, M. W. Pierce and J. Avruch, Identification of the insulin receptor residues undergoing insulin-stimulated phosphorylation in intact rat hepatoma cells, J. Biol. Chem. 263:350 (1988).PubMedGoogle Scholar
  33. 33.
    M. F. White, S. E. Shoelson, H. Keutman and C. R. Kahn, A cascade if tyrosine autophosphorylation in the β subunit acitvates the phosphotransferase of the insulin receptor, J. Biol. Chem. 263:2969 (1988).PubMedGoogle Scholar
  34. 34.
    J. Avruch, R. A. Nemehoff, P. J. Blackshear, M. W. Pierce and R. Osathandonh, Insulin-stimulated tyrosine phosphorylation of the insulin receptor in detergent extracts of human placental membranes, J. Biol. Chem. 257:15162 (1982).PubMedGoogle Scholar
  35. 35.
    M. Kasuga, Y. Zick, D. L. Blithe, F. A. Karlsson, H. U. Haring and C. R. Kahn, Insulin stimulation of phosphorylation of the β subunit of the insulin receptor, J. Biol. Chem. 257:9891 (1982).PubMedGoogle Scholar
  36. 36.
    M. Kasuga, Y. Zick, D. L. Blithe, M. Crettaz and C. R. Kahn, Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system, Nature (London) 298:667 (1982).CrossRefGoogle Scholar
  37. 37.
    S. Jacobs, F. C. Kull, Jr., H. S. Earp, M. E. Svoboda, J. J. Van Wyk and P. Cuatrecasas, Somatomedin-C stimulates the phosphorylation of the β-subunit of its own receptor, J. Biol. Chem. 258:9581 (1983).PubMedGoogle Scholar
  38. 38.
    J. B. Rubin, M. A. Shia and P. F. Pilch, Stimulation of tyrosine-specific phosphorylation in vitro by insulin-like growth factor I, Nature (London) 305:438 (1983).CrossRefGoogle Scholar
  39. 39.
    J. J. Van Wyk, M. E. Svodoba and L. E. Underwood, Evidence from radioligand assays that somatomedin-C and insulin-like growth factor-I are similar to each other and different from other somatomedins, J. Clin. Endocrinol. Metab. 50:206 (1980).PubMedCrossRefGoogle Scholar
  40. 40.
    Y. Zick, N. Sasaki, R. W. Rees-Jones, G. Grunberger, S. P. Nissely and M. M. Rechler, Insulin-like growth factor-I (IGF-I) stimulates tyrosine kinase activity in purified receptors from a rat liver cell line, Biochem. Biophys. Res. Commun. 119:6 (1984).PubMedCrossRefGoogle Scholar
  41. 41.
    N. Sasaki, R. W. Rees-Jones, Y. Zick, S. P. Nissely and N. M. Rechler, Characterization of insulin-like growth factor-I stimulated tyrosine kinase activity associated with the β-subunit of Type I insulin-like growth factor receptors of rat liver cells, J. Biol. Chem. 260:9793.Google Scholar
  42. 42.
    Y. Fujita-Yamaguchi, T. R. LeBon, M. Tsubokawa, W. Henzel, S. Kathuria, D. Koyal and J. Ramachandran, Comparison of insulin-like growth factor I receptor and insulin receptor purified from human placenta membranes, J. Biol. Chem. 261:16727 (1986).PubMedGoogle Scholar
  43. 43.
    K.-T. Yu, M. A. Peters and M. P. Czech, Similar control mechanisms regulate the insulin and Type I insulin-like growth factor receptor kinases, J. Biol. Chem. 261:11341 (1986).PubMedGoogle Scholar
  44. 44.
    H.-U. Haring, M. Kasuga, M. F. White, M. Crettaz and C. R. Kahn, Phosphorylation and dephosphorylation of the insulin receptor: evidence against an intrinsic phosphatase activity, Biochemistry 23:3298 (1984).PubMedCrossRefGoogle Scholar
  45. 45.
    H. Gazzano, A. Kowalski, M. Fehlman and E. Van Obberghen, Two different protein kinase activities are associated with the insulin receptor, Biochem. J. 216:575 (1983).PubMedGoogle Scholar
  46. 46.
    G. Scatchard, The attractions of proteins for small molecules and ions, Ann. N.Y. Acad. Sci. 51:660 (1949).CrossRefGoogle Scholar
  47. 47.
    J. M. Hammond, L. Jarett, I. K. Mariz and W. H. Daughaday, Heterogeneity of insulin receptors on fat cell membranes, Biochem. Biophvs. Res. Commun. 49:1122 (1972).CrossRefGoogle Scholar
  48. 48.
    C. R. Kahn, P. Freychet, J. Roth and D. M. Neville, Jr., Quantitative aspects of the insulin-receptor interaction in liver plasma membrane, J. Biol. Chem. 249:2249 (1974).PubMedGoogle Scholar
  49. 49.
    R. J. Pollet, M. L. Standaert and B. A. Haase, Insulin binding to the human lymphocyte receptor, J. Biol. Chem. 252:5828 (1977).PubMedGoogle Scholar
  50. 50.
    P. De Meyts, J. Roth, D. M. Neville, Jr., J. R. Gavin III and M. A. Lesniak, Insulin interaction with its receptors: experimental evidence for negative cooperativity, Biochem. Biophys. Res. Commun. 55:154 (1973).PubMedCrossRefGoogle Scholar
  51. 51.
    P. De Meyts, A. R. Bianco and J. Roth, Site-site interactions among insulin receptors, J. Biol. Chem. 251:1877 (1976).Google Scholar
  52. 52.
    B. H. Ginsberg, C. R. Kahn, J. Roth and P. De Meyts, Insulin-induced dissociation of its receptor into subunits: possible molecular concomitant of negative cooperativity. Biochem. Biophvs. Res. Commun. 73:1068 (1976).CrossRefGoogle Scholar
  53. 53.
    P. De Meyts, Cooperative properties of hormone receptors in cell membranes, J. Supramolec. Struct. 4:241 (1976).CrossRefGoogle Scholar
  54. 54.
    J. R. Gavin III, P. Gorden, J. Roth, J. A. Archer and D. N. Buell, Characteristics of the human lymphocyte insulin receptor, J. Biol. Chem. 248:2202 (1973).PubMedGoogle Scholar
  55. 55.
    P. De Meyts, Insulin and growth hormone receptors in human cultured lymphocytes and peripheral blood monocytes, in: “Methods in Receptor Research”, M. Blecher, ed., Vol 9, Part 1, M. Decker, NY (1976).Google Scholar
  56. 56.
    P. De Meyts, E. Van Obberghen, J. Roth, A. Wollmer and D. Brandenburg, Mapping the residues in the receptor-binding region of insulin responsible for the negative cooperativity, Nature 273:504 (1978).PubMedCrossRefGoogle Scholar
  57. 57.
    P. De Meyts, J.-L. Gu, R.M. Shymko, B. Kaplan, G. Bell and J. Whittaker. Insulin receptor α-subunit sequence 83–103 contains a binding domain complementary to the cooperative site of insulin, in: “The action of insulin and related growth factors in diabetes mellitus,” Joslin Diabetes Center Symposium, Harvard Medical School (1988).Google Scholar
  58. 58.
    R. C. Baxter and P. F. Williams, Reciprocal modulation of insulin and insulin-like growth factor-I receptor affinity by calcium, Biochem. Biophvs. Res. Commun. 116:62 (1983).CrossRefGoogle Scholar
  59. 59.
    S. J. Casella, V. K. Han, A. J. D’Ercole, M. E. Svoboda and J. J. Van Wyk, Insulin-like growth factor II binding to the type I somatomedin receptor, J. Biol. Chem. 261:9268 (1986).PubMedGoogle Scholar
  60. 60.
    H. A. Jonas and L. C. Harrison, The human placenta contains two distinct binding and immunoreactive species of insulin-like growth factor-I receptors, J. Biol. Chem. 260:2288 (1985).PubMedGoogle Scholar
  61. 61.
    H. A. Jonas and L. C. Harrison, Disulphide reduction alters the immunoreactivity and increases the affinity of insulin-like growth-factor-I receptors in human placenta, Biochem. J. 236:417 (1986).PubMedGoogle Scholar
  62. 62.
    S. E. Tollefsen, K. Thompson and D. J. Petersen, Separation of the high affinity insulin-like growth factor I receptor from low affinity binding sites by affinity chromatography, J. Biol. Chem. 262:16461 (1987).PubMedGoogle Scholar
  63. 63.
    M. Boni-Schnetzler, J. B. Rubin and P. F. Pilch, Structural requirements for the transmembrane activation of the inuslin receptor kinase, J. Biol. Chem. 261:15281 (1986).PubMedGoogle Scholar
  64. 64.
    M. Boni-Schnetzler, W. Scott, S. M. Waugh, E. DiBella and P. F. Pilch, The insulin recptor, J. Biol. Chem. 262:8395 (1987).PubMedGoogle Scholar
  65. 65.
    L. J. Sweet, B. D. Morrison and J. E. Pessin, Isolation of functional heterodimers from the purified human placental α 2 β 2 heterote-trameric insulin receptor complex, J. Biol. Chem. 262:6939 (1987).PubMedGoogle Scholar
  66. 66.
    S. E. Tollefsen and K. Thompson, The structural basis for insulinlike growth factor I receptor high affinity binding, J. Biol. Chem. 263:16267 (1988).PubMedGoogle Scholar
  67. 67.
    L. J. Sweet, B. D. Morrison, P. A. Wilden and J. E. Pessin, Insulin-dependent intermolecular subunit communication between isolated heterodimeric insulin receptor complexes, J. Biol. Chem. 262:16730 (1987).PubMedGoogle Scholar
  68. 68.
    C. C. Yip and M. L. Moule, Structure of the insulin receptor of rat adipocytes: the 3 interconvertible redox forms, Diabetes 32:760 (1983).PubMedCrossRefGoogle Scholar
  69. 69.
    M. Crettaz, I. Jialal, M. Kasuga and C.R. Kahn, Insulin receptor regulation and desensitization in rat hepatoma cells. J. Biol. Chem. 259:11543 (1984).PubMedGoogle Scholar
  70. 70.
    R. A. Aiyer, Structural characterization of insulin receptors. I. Hydrodynamic properties of receptors from turkey erythrocytes, J. Biol. Chem. 258:14992 (1983).PubMedGoogle Scholar
  71. 71.
    R. A. Aiyer, Structural characterization of insulin receptors. II. Subunit composition of receptors from turkey erythrocytes, J. Biol. Chem. 258:15000 (1983).PubMedGoogle Scholar
  72. 72.
    A. Deger, H. Kramer, R. Rapp, R. Koch and U. Weber, The nonclassical insulin binding of insulin receptors from rat liver is due to the presence of two interacting α-subunits in the recptor complex, Biochem. Biophys. Res. Commun. 135:458 (1986).CrossRefGoogle Scholar
  73. 73.
    R. Koch, A. Deger, H. M. Jack, K. N. Klotz, D. Schenzle, H. Kramer, S. Keim, G. Muller, R. Rapp and U. Weber, Characterization of sol-ubilized insulin receptors from rat liver microsomes, Eur. J. Biochem. 154:281 (1986).PubMedCrossRefGoogle Scholar
  74. 74.
    J. Massague and M. P. Czech, Unique proteolytic cleavage site on the β subunit of the insulin receptor, J. Biol. Chem. 256:3182 (1981).PubMedGoogle Scholar
  75. 75.
    P. J. Bertics and G. N. Gill, Self-phosphorylation enhances the protein kinase activity of the epidermal growth factor receptor, J. Biol. Chem. 260:14642 (1985).PubMedGoogle Scholar
  76. 76.
    C. Cassel, L. J. Pike, G. A. Grant, E. G. Krebs and L. Glaser, Interaction of epidermal growth factor-dependent protein kinase with endogenous membrane proteins and soluble peptide substrate, J. Biol. Chem. 258:2945 (1983).PubMedGoogle Scholar
  77. 77.
    W. H. Moolenaar, A. J. Bierman, B. C. Tilly, I. Verlaan, L. H. K. Defize, A. M. Honegger, A. Ullrich and J. Schlessinger, A point mutation at the ATP-binding site of the EGF receptor abolishes signal transduction, EMBO J. 7:707 (1988).PubMedGoogle Scholar
  78. 78.
    O. M. Rosen, R. Herrera, Y. Olowe, L. M. Petruzzelli and M. M. Cobb, Phosphorylation activates the insulin receptor tyrosine protein kinase, Proc. Natl. Acad. Sci. USA 80:3237 (1983).PubMedCrossRefGoogle Scholar
  79. 79.
    H. K. Klein, G. Friedenberg, M. Kladde and J. M. Olefsky, Insulin activation of insulin receptor tyrosine kinase in intact rat adipocytes, J. Biol. Chem. 261:4691 (1986).PubMedGoogle Scholar
  80. 80.
    K.-T. Yu and M. P. Czech, Tyrosine phosphorylation of the insulin receptor β subunit activates the receptor-associated tyrosine kinase activity, J. Biol. Chem. 259:5277 (1984).PubMedGoogle Scholar
  81. 81.
    K.-T. Yu and M. P. Czech, Tyrosine phosphorylation of insulin receptor β subunit activates the receptor tyrosine kinase in intact H-35 hepatoma cells, J. Biol. Chem. 261:4715 (1986).PubMedGoogle Scholar
  82. 82.
    B. D. Morrison and J. E. Pessin, Insulin stimulation of the insulin receptor kinase can occur in the complete absence of β subunit autophosphorylation, J. Biol. Chem. 262:2861 (1987).PubMedGoogle Scholar
  83. 83.
    R. A. Kohanski and M. D. Lane, Kinetic evidence for activating and non-activating components of autophosphorylation of the insulin receptor protein kinase, Biochem. Biophys. Res. Commun. 134:1312 (1986).CrossRefGoogle Scholar
  84. 84.
    H. E. Tornqvist and J. Avruch, Relationship of site-specific β subunit tyrosine autophosphorylation to insulin activation of the insulin receptor (tyrosine) protein kinase activity, J. Biol. Chem. 263:2969 (1988).Google Scholar
  85. 85.
    D. A. McClain, H. Maegawa, J. Levy, T. Huecksteadt, T. J. Dull, J. Lee, A. Ullrich and J. M. Olefsky, Properties of a human insulin receptor with a COOH-terminal truncation. I. Insulin binding, autophosphorylation and endocytosis, J. Biol. Chem. 263:8904 (1988).PubMedGoogle Scholar
  86. 86.
    H. Maegawa, D. A. McCalin, G. Friedenberg, J. M. Olefsky, M. Napier, T. Lipari, T. J. Dull, J. Lee and A. Ullrich, Properties of human insulin receptor with a COOH-terminal truncation. II. Truncated receptors have normal kinase but are defective in signaling metabolic effects, J. Biol. Chem. 263:8912 (1988).PubMedGoogle Scholar
  87. 87.
    L. Ellis, E. Clauser, D. O. Morgan, M. Edery, R. A. Roth and W. J. Rutter, Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucose, Cell 45:721 (1986).PubMedCrossRefGoogle Scholar
  88. 88.
    P. A. Wilden, T. R. Boyle, M. L. Swanson, L. J. Sweet and J. E. Pessin, Alteration of intramolecular disulfides in the insulin receptor/kinase by insulin and dithiothreitol: insulin potentiates the apparent dithiothreitol-dependent subunit reduction of the insulin receptor, Biochemistry 25:4381 (1986).PubMedCrossRefGoogle Scholar
  89. 89.
    L. Petruzzelli, R. Herrera and O. M. Rosen, Insulin receptor is an insulin-dependent tyrosine protein kinase: copurification of insulin-binding activity and protein kinase activity to homogeneity from human placenta, Proc. Natl. Acad. Sci. USA 81:3327 (1984).PubMedCrossRefGoogle Scholar
  90. 90.
    L. J. Sweet, P. A. Wilden, A. A. Spector and J. E. Pessin, Incorporation of the purified human placental insulin receptor into phospholipid vesicles, Biochemistry 24:6571 (1985).PubMedCrossRefGoogle Scholar
  91. 91.
    M. F. White, S. Takayama and C. R. Kahn, Differences in the sites of phosphorylation of the insulin receptor in vivo and in vitro, J. Biol. Chem. 260:9470 (1985).PubMedGoogle Scholar
  92. 92.
    D. Pang, B. Sharma, J. Schafer, M. White and C. R. Kahn, Predominance of tyrosine phosphorylation of insulin receptors during the initial response of intact cells to insulin, J. Biol. Chem. 260:7131 (1985).PubMedGoogle Scholar
  93. 93.
    H. Gazzano, A. Kowalski, M. Fehlmann and E. Van Obberghen, Two different protein kinase activities are associated with the insulin receptor, Biochem. J. 216:575 (1983).PubMedGoogle Scholar
  94. 94.
    K.-T. Yu, N. Khalaf and M.P. Czech, Insulin stimulates a membrane-bound serine kinase that may be phosphorylated on tyrosine. Proc. Natl. Acad. Sci. USA 84:3972 (1987).PubMedCrossRefGoogle Scholar
  95. 95.
    D. M. Smith, M. J. King and G. J. Sale, Two systems in vitro that show insulin-stimulated serine kinase activity towards the insulin receptor, Biochem. J. 250:509 (1988).PubMedGoogle Scholar
  96. 96.
    S. Takayama, M. F. White, V. Lauris and C. R. Kahn, Phobol esters modulate insulin receptor phosphorylation and insulin action in cultured hepatoma cells, Proc. Natl. Acad. Sci. USA 81:7797 (1984).PubMedCrossRefGoogle Scholar
  97. 97.
    G.E. Bollag, R.A. Roth, J. Beaudoin, D. Mochly-Rosen and D. E. Kosland, Jr. Protein kinase C directly phosphorylates the insulin receptor in vitro and reduces its protein-tyrosine kinase activity, Proc. Natl. Acad. Sci. USA 83:5822 (1986).PubMedCrossRefGoogle Scholar
  98. 98.
    R.A. Roth and J. Beaudoin, Phosphorylation of purified insulin receptor by cAMP kinase, Diabetes 36:123 (1987).PubMedCrossRefGoogle Scholar
  99. 99.
    H. Haring, D. Kirsch, B. Obermaier, B. Ermel and F. Machicao, Decreased tyrosine kinase activity of insulin receptor isolated from rat adipocytes rendered insulin-resistant by catecholamine treatment in vitro, Biochem. J. 234:59 (1986).PubMedGoogle Scholar
  100. 100.
    L. Stadtmauer and O.M. Rosen. Increasing the cAMP content of IM-9 cells alters the phosphorylation state and protein kinase activity of the insulin receptor, J. Biol. Chem. 261:3402 (1986).PubMedGoogle Scholar
  101. 101.
    S. Jacobs, N. E. Sahyoun, A. R. Saltiel and P. Cuatrecasas, Phorbol esters stimulate the phosphorylation of receptors for insulin and somatomedin, Proc. Natl. Acad. Sci. USA 80:6211 (1983).PubMedCrossRefGoogle Scholar
  102. 102.
    M. F. White, R. Maron, C. R. Kahn, Insulin rapidly stimulates tyrosine phosphorylation of a Mr 185,000 protein in intact cells, Nature 318:183 (1985).PubMedCrossRefGoogle Scholar
  103. 103.
    K. T. Yu, N. Khalaf and M. P. Czech, Insulin stimulates the tyrosine phosphorylation of a Mr — 160,000 glycoprotein in rat adipocyte plasma membranes, J. Biol. Chem. 262:7865 (1987).PubMedGoogle Scholar
  104. 104.
    R. A. Kohanski, S. C. Frost and M. D. Lane, Insulin-dependent phosphorylation of the insulin receptor-protein kinase and activation of glucose transport in 3T3L-1 adipocytes, J. Biol. Chem. 261:12272 (1986).PubMedGoogle Scholar
  105. 105.
    R. W. Rees-Jones and S. I. Taylor, An endogenous substrate for the insulin receptor-associated tyrosine kinase, J. Biol. Chem. 260:4461 (1985).PubMedGoogle Scholar
  106. 106.
    T. Izumi, M. F. White, T. Kadowaki, F. Takaku, Y. Akanuma and M. Kasuga, Insulin-like growth factor I rapidly stimulates tyrosine phosphorylation of a Mr 185,000 protein in intact cells, J. Biol. Chem. 262:1282 (1987).PubMedGoogle Scholar
  107. 107.
    H.-U. Haring, M. F. White, F. Machicas, B. Ermel, E. Schleicher and B. Obermaier, Insulin rapidly stimulates phsophorylation of a 46-kDa membrane protein on tyrosine residues as well as phosphorylation of several soluble proteins in intact fat cells, Proc. Natl. Acad. Sci. USA 84:113 (1987).PubMedCrossRefGoogle Scholar
  108. 108.
    R. C. Hresko, M. Bernier, R. D. Hoffman, J. R. Flores-Riveros, K. Liao, D. M. Laird and D. M. Lane, Identification of phosphorylated 422(aP2) protein as ppl5, the 15-kilodalton target of the insulin receptor tyrosine kinase in 3T3L-1 adipocytes, Proc. Natl. Acad. Sci. USA 85:8835 (1988).PubMedCrossRefGoogle Scholar
  109. 109.
    D. Sahal, J. Ramachandran and Y. Fugita-Yamaguchi, Specificity of tyrosine protein kinase of the structurally related receptors for insulin and insulin-like growth factor I: Tyr-containing synthetic polymers as specific inhibitors or substrates, Arch. Biochem. Biophvs. 260:416 (1988).CrossRefGoogle Scholar
  110. 110.
    Y. C. Kwok, R. A. Nemenoff, A. C. Powers and J. Avruch, Kinetic properties of the insulin receptor tyrosine protein kinase: activation through an insulin-stimulated tyrosine specific, intramolecular autophosphorylation, Arch. Biochem. Biophvs. 244:102 (1986).CrossRefGoogle Scholar
  111. 111.
    G. Arsenis and J. N. Livingston, Alterations in the tyrosine kinase activity of the insulin receptor produced by in vitro hyperinsu-linemia, J. Biol. Chem. 261:147 (1986).PubMedGoogle Scholar
  112. 112.
    M. F. White, H.-U. Haring, M. Kasuga and C. R. Kahn, Kinetic properties and sites of autophosphorylation of the partially purified insulin receptor from hepatoma cells, J. Biol. Chem. 259:255 (1984).PubMedGoogle Scholar
  113. 113.
    D. H. Walker, D. Kuppuswamy, A. Visvanathan and L. J. Pike, Substrate specificity and kinetic mechanism of human placental insulin receptor/kinase, Biochemistry 26:1428 (1987).PubMedCrossRefGoogle Scholar
  114. 114.
    Y. Zick, M. Kasuga, C. R. Kahn and J. Rpth, Characterization of insulin-mediated phosphorylation of the insulin receptor in a cell-free system, J. Biol. Chem. 258:75 (1983).PubMedGoogle Scholar
  115. 115.
    O. M. Rosen and D. E. Lebwohl, Polylysine activates and alters the divalent cation requirements of the insulin receptor protein tyrosine kinase, FEBS Lett. 231:397 (1988).PubMedCrossRefGoogle Scholar
  116. 116.
    D. B. Sacks and J. M. McDonald, Insulin-stimulated phosphorylation of calmodulin by rat liver insulin receptor preparations, J. Biol. Chem. 263:2377 (1988).PubMedGoogle Scholar
  117. 117.
    B. D. Morrison and J. E. Pessin, Polylysine specifically activates the insulin-dependent insulin receptor protein kinase, J. Biol. Chem. submitted.Google Scholar
  118. 118.
    M. Kasuga, F. A. Karlsson and C. R. Kahn, Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor, Science 215:185 (1982).PubMedCrossRefGoogle Scholar
  119. 119.
    C. K. Chou, T. J. Cull, D. S. Russell, R. Gherzi, D. Lebwohl, A. Ullrich and O. M. Rosen, Human insulin receptos mutated at the ATP-binding site lack protein tyrosine kinase activity and fail to mediate postreceptor effects of insulin, J. Biol. Chem. 262:1842 (1986).Google Scholar
  120. 120.
    G. Steele-Perkins, J. Turner, J. C. Edman, J. Hari, S. B. Pierce, C. Stover, W. J. Rutter and R. A. Roth, Expression and characterization of a functional human insulin-like growth factor I receptor, J. Biol. Chem. 263:11486 (1988).PubMedGoogle Scholar
  121. 121.
    Y. Ebina, E. Araki, M. Taira, F. Shimada, M. Mori, C. Craik, K. Siddle and S. Pierce, Replacement of lysine residue 1030 in the putative ATP-binding region of the insulin receptor abolishes insulin- and antibody-stimulated glucose uptake and receptor kinase activity, Proc. Natl. Acad. Sci. USA 83:704 (1987).CrossRefGoogle Scholar
  122. 122.
    D. O. Morgan, L. Ho, L. J. Korn and R. A. Roth, Insulin action is blocked by monoclonal antibody that inhibits the insulin receptor kinase, Proc. Natl. Acad. Sci. USA 83:328 (1986).PubMedCrossRefGoogle Scholar
  123. 123.
    D. O. Morgan and R. A. Roth, Acute insulin action reguires insulin receptor kinase activity: introduction of an inhibitory monoclonal antibody into mammalian cells blocks the rapid effects of insulin, Proc. Natl. Acad. Sci. USA 84:41 (1987).PubMedCrossRefGoogle Scholar
  124. 124.
    C. R. Kahn, R. Maron and M. S. White, Modulation to growth of antibodies to phosphotyrosine containing proteins, Clin. Res. 34:684 (1986).Google Scholar
  125. 125.
    J. R. Forsayeth, J. F. Caro, M. K. Sinha, B. A. Maddux and I. D. Goldfine, Monoclonal antibodies to the human insulin receptor that activate glucose transport but not insulin receptor kinase activity, Proc. Natl. Acad. Sci. USA 84:3448 (1987).PubMedCrossRefGoogle Scholar
  126. 126.
    M. F. White, J. N. Livingston, J. M. Backer, V. Lauris, T. J. Dull, A. Ullrich and C. R. Kahn, Mutation of the insulin receptor of tyrosine 960 inhibits signal transmission but does not affect its tyrosine kinase activity, Cell 54:641 (1988).PubMedCrossRefGoogle Scholar
  127. 127.
    O. M. Rosen, After insulin binds, Science 237:1452 (1987).PubMedCrossRefGoogle Scholar
  128. 128.
    G. N. Panoyotou, A. I. Magee and M. J. Geisow, Title, FEBS Lett. 183:321 (1985).CrossRefGoogle Scholar
  129. 129.
    R. E. Lewis and M. P. Czech, Phospholipid environment alters hormonesensitivity of the purified insulin receptor kinase, Biochem. J. 248:829 (1987).PubMedGoogle Scholar
  130. 130.
    B. D. Morrison, M. L. Swanson, L. J. Sweet and J. E. Pessin, Insulindependent covalent reassociation of isolated heterodimeric insulin receptors into an α 2 β 2 heterotetrameric disulfide-linked complex, J. Biol. Chem. 263:7806 (1988).PubMedGoogle Scholar
  131. 131.
    M. Boni-Sehnetzler, A. Kaligian, R. Del Vecchio and P. F. Pilch, Ligand-dependent intersubunit association within the insulin receptor complex activates its intrinsic kinase activity, J. Biol. Chem. 263:6822 (1988).Google Scholar
  132. 132.
    P. A. Wilden, B. D. Morrison and J. E. Pessin, Relationship between insulin receptor subunit association and protein kinase activation, Biochemistry, in press, (1988).Google Scholar
  133. 133.
    J. E. Pessin and M. P. Czech, Hexose transport and its regulation in mammalian cells, in: “The Enzymes of Biological Membranes,” A. N. Martonosi, ed., Vol. 3, Plenum Press, NY (1985).Google Scholar
  134. 134.
    D. Heffetz and Y. Zich, Receptor aggregation is necessary for activation of the soluble insulin receptor kinase, J. Biol. Chem. 261:889 (1986).PubMedGoogle Scholar
  135. 135.
    C. R. Kahn, K. Baird, J. S. Flier and D. B. Jarrett, Effects of autoantibodies to the insulin receptor on isolated adipocytes: studies of insulin binding and insulin action, J. Clin. Invest. 60:1094 (1977).PubMedCrossRefGoogle Scholar
  136. 136.
    J. S. Flier, C. R. Kahn, D. B. Jarrett and J. Roth, Characterization of antibodies to the insulin receptor: a cause of insulin-resistant diabetes in man, J. Clin. Invest. 58:1442 (1976).PubMedCrossRefGoogle Scholar
  137. 137.
    C. R. Kahn, K. Baird, R. Baird, D. B. Jarrett and J. S. Flier, Direct demonstration that receptor cross-linking or aggregation is important in insulin action, Proc. Natl. Acad. Sci. USA 75:4209 (1978).PubMedCrossRefGoogle Scholar
  138. 138.
    L. Jarett and R. M. Smith, Electron microscopic demonstration of insulin receptors on adipocyte plasma membranes utilizing a ferritin-insulin conjugate, J. Biol. Chem. 249:7024 (1974).PubMedGoogle Scholar
  139. 139.
    L. Jarett and R. M. Smith, Effect of cytochalasin B and D on groups of insulin receptors and on insulin action in rat adipocytes, Clin. Invest. 6:571 (1979).Google Scholar
  140. 140.
    P. A. Wilden, B. D. Morrison and J. E. Pessin, Wheat germ agglutinin stimulation of heterodimeric insulin receptor β subunit autophosphorylation by noncovalent association into an α 2 β 2 het erotetrameric state, Endocrinologv 124: in press, (1988).Google Scholar
  141. 141.
    R. Herrera, D. Lebwohl, A. Garcia de Herreros, R. G. Kallen and O. M. Rosen, Synthesis, purification, and characterization of the cytoplasmic domain of the human insulin receptor using a baculovirus expression system, J. Biol. Chem. 263:5560 (1988).PubMedGoogle Scholar
  142. 142.
    S. E. Shoelson, M. F. White and C. R. Kahn, Tryptic activation of the insulin receptor, J. Biol. Chem. 263:4852 (1988).PubMedGoogle Scholar
  143. 143.
    S. M. Feltz, M. L. Swanson, J. A. Wemmie and J. E. Pessin, Functional properties of an isolated heterodimeric human placenta insulinlike growth factor 1 receptor complex, Biochemistry 27:3234 (1988).PubMedCrossRefGoogle Scholar
  144. 144.
    A. Ullrich, L. Coussens, J. S. Hayflick, T. J. Dull, A. Gray, A. W. Tam, J. Lee, Y. Yarden, T. A. Libermann, J. Schlessinger, J. Downward, E. L. V. Mayes, N. whittle, M. D. Waterfield and P. H. Seeburg, Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells, Nature (London) 309:418 (1984).CrossRefGoogle Scholar
  145. 145.
    Y. Yarden and J. Schlessinger, Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation, Biochemistry 26:1434 (1987).PubMedCrossRefGoogle Scholar
  146. 146.
    Y. Yarden and J. Schlessinger, Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor, Biochemistry 26:1443 (1987).PubMedCrossRefGoogle Scholar
  147. 147.
    M. Boni-Schnetzler and P. F. Pilch, Mechanism of epidermal growth factor receptor autophosphorylation and high-affinity binding, Proc. Natl. Acad. Sci. USA 84:7832 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Jeffrey E. Pessin
    • 1
  • Judith L. Treadway
    • 1
  1. 1.Department of Physiology and BiophysicsThe University of IowaIowa CityUSA

Personalised recommendations