Growth Regulation of Human Breast Cancer by Insulin-Like Growth Factors

  • Douglas Yee
  • Kevin J. Cullen
  • Soonmyoung Paik
  • Marc E. Lippman
  • Neal Rosen


In the United States, breast cancer is the commonest malignancy of women and accounts for more deaths than any other tumor (1). Nearly 100 years ago, Beatson (2) demonstrated that oophorectomy could induce remission in some women with metastatic breast cancer. This was the first clinical suggestion that breast cancer growth could be regulated by the hormone estrogen. Since that time, manipulations aimed at reducing the estrogen available to breast cancer tissues have included surgical oophorectomy, adrenalectomy and hypophysectomy. Additionally, pharmacologic agents that inhibit estrogen synthesis, estrogen binding to its receptor and pituitary releasing factor analogs have been developed. These therapies are successful in only a minority of patients with breast cancer (3). Many breast cancers are not hormonally sensitive at the time of diagnosis and most of those cancers that are initially sensitive will eventually escape their dependence on estrogen.


Breast Cancer Breast Cancer Cell Breast Cancer Cell Line Autocrine Growth Factor Malignant Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. M. Parkin, J. Stjernsward and C. S. Muir, Estimates of the world-wide frequency of twelve major cancers, Bull. WHO. 62:163 (1984).PubMedGoogle Scholar
  2. 2.
    G. T. Beatson, On the treatment of inoperable cases of carcinoma of the mamma. Suggestions for a new method of treatment with illustrative cases, Lancet. 2:104 (1896).CrossRefGoogle Scholar
  3. 3.
    I. C. Henderson, Endocrine therapy in metastatic breast cancer, in: Breast Diseases, J. R. Harris, S. Hellman, I. C. Henderson, D. W. Kinne, eds., J. B. Lippincott Co., Philadelphia, (1987).Google Scholar
  4. 4.
    M. E. Lippman, Definition of hormones and growth factors required for optimal proliferation and expression of phenotypic responses in human breast cancer cells, in: Cell Culture Methods for Molecular and Cell Biology, Vol.2, D. W. Barnes, D. A. Sirbasku and G. H. Sato, ed., Alan R. Liss, New York, (1984).Google Scholar
  5. 5.
    J. A. Eisman, T. J. Martin, I. Maclntyre, R. J. Framptin, J. M. Moseley and R. Whitehead, 1,25-dihydroxyvitamin D3 receptor in a cultured breast cancer cell line (MCF-7 cells), Biochem. Biophys. Res. Comm.. 93:9 (1980).PubMedCrossRefGoogle Scholar
  6. 6.
    M. B. Sporn and A. B. Roberts, Autocrine growth factors and cancer, Nature. 313:745 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    C. K. Osborne, G. Bolan, M. E. Monaco and M. E. Lippman, Hormone responsive human breast cancer in long-term tissue culture: effect of insulin, Proc. Natl. Acad. Sci.. 73:4536 (1976).PubMedCrossRefGoogle Scholar
  8. 8.
    R. W. Furlanetto and J. N. DiCarlo, Somatomedin-C receptors and growth effects in human breast cells maintained in long term tissue culture, Canc. Res.. 44:2122 (1984).Google Scholar
  9. 9.
    J. S. Flier, P. Usher and A. C. Moses, Monoclonal antibody to the type I insulinlike growth factor (IGF-I) receptor blocks IGF-I receptor-mediated DNA synthesis: clarification of the mitogenic mechanisms of IGF-I and insulin in human skin fibroblasts, Proc. Natl. Acad. Sci.. 83:664 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    K. K. Huff, D. Kaufman, K. H. Gabbay, E. M. Spencer, M. E. Lippman and R. B. Dickson, Secretion of an insulin-like growth factor-I-related protein by human breast cancer cells, Canc. Res.. 46:4613 (1986).Google Scholar
  11. 11.
    Y. Myal, R. P. C. Shiu, B. Bhaumick and M. Bala, Receptor binding and growth-promoting activity of insulin-like growth factors in human breast cancer cells (T-47D) in culture, Canc. Res.. 44:5486 (1984).Google Scholar
  12. 12.
    D. Yee, K. J. Cullen, S. Paik, J. F. Perdue, B. Hampton, A. Schwartz, M.E. Lippman and N. Rosen, Insulin-like growth factor II mRNA expression in human breast cancer, Canc. Res.. 48:6691 (1988).Google Scholar
  13. 13.
    K. P. Karey and D. A. Sirbasku, Differential responsiveness of human breast cancer cell lines MCF-7 and T47D to growth factors and 17β-estradiol, Canc. Res.. 48:4083 (1988).Google Scholar
  14. 14.
    P. E. Cryer, Glucose homeostasis and hypoglycemia, in: Williams Textbook of Endocrinology, J. D. Wilson and D. W. Foster, eds. W.B. Saunders Co., Philadelphia (1985).Google Scholar
  15. 15.
    V. K. M. Han, A. J. D’Ercole and P. K. Lund, Cellular localization of somatomedin messenger RNA in the human fetus, Science. 236:193 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    F. Minuto, P. DelMonte, A. Barreca, A. Nicolin and G. Giordano, Partial characterization of somatomedin C-like immunoreactivity secreted by breast cancer cells in vitro, Mol. Cell. Endo.. 54:179 (1987).CrossRefGoogle Scholar
  17. 17.
    C. K. Osborne, C. R. Ross, E. B. Coronado, S. A. Fuqua and L. J. Kitten, Secreted growth factors from estrogen receptor-negative human breast cancer do not support growth of estrogen receptor-positive breast cancer in the nude mouse model, Breast Canc. Res. Treat.. 11:211 (1988).CrossRefGoogle Scholar
  18. 18.
    D. Yee, S. Paik, G. S. Lebovic, R. R. Marcus, R. E. Favoni, K. J. Cullen, M. E. Lippman, and N. Rosen, Analysis of IGF-I gene expression in malignancy, evidence for a paracrine role in human breast cancer, Mol. Endo., in press (1989).Google Scholar
  19. 19.
    P. Rotwein, K. M. Pollock, N. Watson and D. T. Milbrandt, Insulin-like growth factor gene expression during rat embryonic development, Endo.. 121:2141 (1987).Google Scholar
  20. 20.
    R. Peres, C. Betsholtz, B. Westermark and C.-H. Heldin, Frequent expression of growth factors for mesenchymal cells in human mammary carcinoma cell lines, Canc. Res.. 47:3425 (1987).Google Scholar
  21. 21.
    M. Binoux, P. Hossenlopp, S. Hardouin, D. Seurin, C. Lassarre and M. Gourmelen, Somatomedin (insulin-like growth factors)-binding proteins, molecular forms and regulation, Hormone Res.. 24:141 (1986).PubMedCrossRefGoogle Scholar
  22. 22.
    W. H. Daughaday, M. Kapadia and I. Mariz, Serum somatomedin binding proteins: physiologic significance and interference in radioligand assay, J. Lab. Clin. Med.. 109:355 (1987).PubMedGoogle Scholar
  23. 23.
    D. De Leon, B. Bakker, D. M. Wilson, R. L. Hintz and R. G. Rosenfeld, Demonstration of insulin-like growth factor (IGF-I and -II) receptors and binding protein in human breast cancer cell lines, Biochem. Biophys. Res. Comm.. 152:398 (1988).CrossRefGoogle Scholar
  24. 24.
    D. Yee, R. E. Favoni, R. Lupu, K. J. Cullen, G. S. Lebovic, K. K. Huff, P. D. K. Lee, Y. L. Lee, D. R. Powell, R. B. Dickson, N. Rosen, and M. E. Lippman, The insulin-like growth factor binding protein BP-25 is expressed by human breast cancer cells, Biochem. Biophys. Res. Comm.. in press, (1989)Google Scholar
  25. 25.
    Y.-L. Lee, R. L. Hintz, P. M. James, P. D. K. Lee, J. E. Shively and D. R. Powell, Insulin-like growth factor (IGF) binding protein cDNA from human HEP G2 hepatoma cells: predicted protein sequence suggests an IGF binding domain different from those of the IGF-I and IGF-II receptors, Mol. Endo.. 2:404 (1988).CrossRefGoogle Scholar
  26. 26.
    A. Brinkman, C. Groffen, D. J. Kortleve, A. Geurts van Kessel and S. L. S. Drop, Isolation and characterization of a cDNA encoding the low molecular weight insulin-like growth factor binding protein (IBP-1), EMBO J., 7:2417 (1988).PubMedGoogle Scholar
  27. 27.
    W. H. Busby Jr., D. G. Klapper and D. R. Clemmons, Purification of a 31,000-dalton insulin-like growth factor binding protein from human amniotic fluid, isolation of two forms with different biological actions, J. Biol. Chem.. 26:14203 (1988).Google Scholar
  28. 28.
    J.-P. Peyrat, J. Bonneterre, J. Beuscart, J. Dijane and A. Demaille, Insulin-like growth factor 1 receptors in human breast cancer and their relation to estradiol and progesterone receptors, Canc. Res.. 48:6429 (1988).Google Scholar
  29. 29.
    Q. T. Rohlik, D. Adams, F. C. Kull Jr. and S. Jacobs, An antibody to the receptor for insulin-like growth factor I inhibits the growth of MCF-7 cells in tissue culture, Biochem. Biophys. Res. Comm.. 149:276 (1987).PubMedCrossRefGoogle Scholar
  30. 30.
    R. A. Roth, Structure of the receptor for insulin-like growth factor II: the puzzle amplified, Science. 239:1269 (1988).PubMedCrossRefGoogle Scholar
  31. 31.
    C. L. Arteaga, L. Kitten, E. Coronado, S. Jacobs, F. Kull and C. K. Osborne, Blockade of the type I somatomedin receptor inhibits growth of estrogen receptor negative human breast cancer cells in athymic mice, Proc. Endo. Soc. 70th Annual Meeting. A683 (1988).Google Scholar
  32. 32.
    D. R. Clemmons and J. J. Van Wyk, Evidence for a functional role of endogenously produced somatomedinlike peptides in the regulation of DNA synthesis in cultured human fibroblasts and porcine smooth muscle cells, J. Clin. Invest.. 75:1914 (1985).PubMedCrossRefGoogle Scholar
  33. 33.
    D. A. Bronzert, P. Pantazis, H. N. Antoniades, A. Kasid, N. Davidson, R. B. Dickson, and M. E. Lippman, Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines, Proc. Natl. Acad. Sci.. 84:5763 (1987).PubMedCrossRefGoogle Scholar
  34. 34.
    D. R. Clemmons, Multiple hormones stimulate the production of somatomedin by cultured human fibroblasts, J. Clin. Endo. Metab.. 58:850 (1984).CrossRefGoogle Scholar
  35. 35.
    P. de Pagter-Holthuizen, M. Jansen, F. M. A. van Schaik, R. vanderKammen, C. Oosterwijk, J. L. Van den Brande, and J. S. Sussenbach, The human insulin-like growth factor II gene contains two development-specific promoters, FEBS letters. 214:259 (1987).PubMedCrossRefGoogle Scholar
  36. 36.
    M. T. Travers, P. J. Barrett-Lee, U. Berger, Y. A. Luqmani, J.-C. Gazet, T. J. Powles, and R. C. Coombes, Growth factor expression in normal, benign, and malignant breast tissue, Br. Med. J.. 296:1621 (1988).CrossRefGoogle Scholar
  37. 37.
    J. Scott, J. Cowell, M. E. Robertson, L. M. Priestley, R. Wadey, B. Hopkins, J. Pritchard, G. I. Bell, L. B. Rail, C. F. Graham, and T. J. Knott, Insulinlike growth factor-II gene expression in Wilms’tumour and embryonic tissues, Nature. 317:260 (1985).PubMedCrossRefGoogle Scholar
  38. 38.
    A. E. Reeve, M. R. Eccles, R. J. Wilkins, G. I. Bell and L. J. Millow, Expression of insulin-like growth factor-II transcripts in Wilms’ tumour, Nature. 317:258 (1985).PubMedCrossRefGoogle Scholar
  39. 39.
    K. Ramasharma and C. H. Li, Human pituitary and placental hormones control human insulin-like growth factor II secretion in human granulosa cells, Proc. Natl. Acad. Sci.. 84:2643 (1987).PubMedCrossRefGoogle Scholar
  40. 40.
    R. P. C. Shiu, L. C. Murphy, Y. Myal, T. C. Dembinski, D. Tsuyuki and B. M. Iwasiow, Actions of pituitary prolactin and insulin-like growth factor II in human breast cancer, in: Breast Cancer: Cellular and Molecular Biology, M.E. Lippman, R.B. Dickson, eds. Kluwer Academic Publishers, Boston, (1988).Google Scholar
  41. 41.
    C. B. Newman, H. Cosby, H. G. Friesen, M. Feldman, P. Cooper, V. DeCrescito, M. Pilon, and D. L. Kleinberg, Evidence for a nonprolactin, non-growth-hormone mammary mitogen in the human pituitary gland, Proc. Natl. Acad. Sci.. 84:8110 (1987).PubMedCrossRefGoogle Scholar
  42. 42.
    I. Ali, R. Lidereau, C. Theillet, R. Callahan, Reduction to homozygosity of genes on chromosome 11 in human breast neoplasia, Science. 238:185 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Douglas Yee
    • 1
  • Kevin J. Cullen
    • 1
  • Soonmyoung Paik
    • 1
  • Marc E. Lippman
    • 1
  • Neal Rosen
    • 1
  1. 1.Lombardi Cancer Research CenterGeorgetown University Medical CenterUSA

Personalised recommendations