Advertisement

Molecular Structure and Function of Phospholamban: The Regulatory Protein of Calcium Pump in Cardiac Sarcoplasmic Reticulum

  • Michihiko Tada
  • Masaaki Kadoma
  • Junichi Fujii
  • Yoshihiro Kimura
  • Yoshiyuki Kijima
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 255)

Abstract

The excitation-contraction coupling of the myocardium represents a three-part process, involving three kinds of subcellular systems. These are sarcolemma, sarcoplasmic reticulum (SR), and myofibrillar proteins. Information transfer among these systems is exclusively carried out by Ca ions1 in that both membranes of sarcolemma and SR exhibit bi-directional Ca fluxes, and the myofibrillar system contains Ca receptor protein troponin. It is important to note that all of these three subcellular systems provide phosphorylation sites for protein kinases and, in addition, such phosphorylation reactions are thought to accompany profound alterations in Ca-related events in these systems. Among these, phosphorylation of phospholamban, a membrane protein in cardiac SR, and its functional consequences are extensively defined 2,3, in that phospholamban presumably serves to modulate Ca pump ATPase of SR by augmenting the key elementary steps of ATPase. Phospholamban of cardiac SR was purified to near homogeneity and was sequenced by amino acid and cDNA sequencing, demonstrating a unique molecular properties. This paper defines the functional and structural characteristics of the phospholamban-ATPase system and attemps to propose a molecular model for the functional unit of phospholamban, which provides a basic understanding for the regulatory mechanism of ion transport and bioenergetic transduction across biomembrane.

Keywords

Sarcoplasmic Reticulum Cyanogen Bromide Fast Atom Bombardment Mass Spectrometry Sarcoplasmic Reticulum Membrane Cardiac Sarcoplasmic Reticulum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Tada, T. Yamamoto, and Y. Tonomura, Molecular mechanism of active calcium transport by sarcoplasmic reticulum, Physiol. Rev. 58:1 (1978)PubMedGoogle Scholar
  2. 2.
    M. Tada and A. M. Katz, Phosphorylation of the sarcoplasmic reticulum and sarcolemma, Annu. Rev. Physiol. 44:401 (1982)PubMedCrossRefGoogle Scholar
  3. 3.
    M. Tada, M. Yamada, M. Kadoma, M. Inui, and F. Ohmori, Calcium transport by cardiac sarcoplasmic reticulum and phosphorylation of phospholamban, Mol. Cell. Biochem. 46:73 (1982)PubMedCrossRefGoogle Scholar
  4. 4.
    M. Tada, M. A. Kirchberger, D. I. Repke, and A. M. Katz, The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3′: 5′-monophosphate-dependent protein kinase, J. Biol. Chem. 249:6174 (1974)PubMedGoogle Scholar
  5. 5.
    M. A. Kirchberger, M. Tada, and A. M. Katz, Adenosine 3′:5′-monophosphate-dependent protein kinase-catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum, J. Biol. Chem. 249:6166 (1974)PubMedGoogle Scholar
  6. 6.
    M. Tada, F. Ohmori, M. Yamada, and H. Abe, Mechanism of the stimulation of Ca2+-dependent ATPase of cardiac sarcoplasmic reticulum by adenosine 3′:5′-monophosphate-dependent protein kinase, J. Biol. Chem. 254:319 (1979)PubMedGoogle Scholar
  7. 7.
    M. Tada, M. Yamada, F. Ohmori, T. Kuzuya, M. Inui, and H. Abe, Transient state kinetic studies of Ca2+-dependent ATPase and calcium transport by cardiac sarcoplasmic reticulum, J. Biol. Chem. 255:1985 (1980)PubMedGoogle Scholar
  8. 8.
    E. G. Kranias, F. Mandel, T. Wang, and A. Schwartz, Mechanism of the stimulation of calcium ion dependent adenosine triphosphatase of cardiac sarcoplasmic reticulum by adenosine 3′’5′-monophosphate dependent protein kinase, Biochemistry 19:5434 (1980)PubMedCrossRefGoogle Scholar
  9. 9.
    M. Inui, M. Kadoma, and M. Tada, Purification and characterization of phospholamban from canine cardiac sarcoplasmic reticulum, J. Biol. Chem. 260:3708 (1985)PubMedGoogle Scholar
  10. 10.
    L. R. Jones, H. K. B. Simmerman, W. W. Wilson, F. R. N. Gurd, and A. D. Wegener, Purification and characterization of phospholamban from canine cardiac sarcoplasmic reticulum, J. Biol. Chem. 260:7721 (1985)PubMedGoogle Scholar
  11. 11.
    T. Suzuki and J. H. Wang, The phosphorylation of purified phospholamban by cyclic AMP-dependent protein kinase is stimulated by phosphatidylinositol, J. Biol. Chem. 262:3880 (1987)PubMedGoogle Scholar
  12. 12.
    G. Jakab and E. G. Kranias, Phosphorylation and dephosphorylation of purified phospholamban and associated phosphatidylinositides, Biochemistry 27:3799 (1988)PubMedCrossRefGoogle Scholar
  13. 13.
    M. Tada, M. A. Kirchberger, and A. M. Katz, Phosphorylation of a 22,000-dalton component of the cardiac sarcoplasmic reticulum by adenosine 3′:5′,-monophosphate-dependent protein kinase, J. Biol. Chem. 250:2640 (1975)PubMedGoogle Scholar
  14. 14.
    J. Fujii, M. Kadoma, M. Tada, M. Toda, and F. Sakiyama, Characterization of structural unit of phospholamban by amino acid sequencing and electrophoretic analysis, Biochem. Biophys. Res. Commun. 138:1044 (1986)PubMedCrossRefGoogle Scholar
  15. 15.
    A. D. Wegener and L. R. Jones, Phosphorylation-induced mobility shift in phospholamban in sodium dodecyl sulfate-polyacrylamide gels, J. Biol. Chem. 259:1834 (1984)PubMedGoogle Scholar
  16. 16.
    T. Imagawa, T. Watanabe, and T. Nakamura, Subunit structure and multiple phosphorylation sites of phospholamban, J. Biochem. (Tokyo) 99:41 (1986)Google Scholar
  17. 17.
    T. Takagi, Determination of protein molecular’ weight by gel permeation chromatography equipped with low-angle laser light scattering photometer, Progress in HPLC 1:27 (1985)Google Scholar
  18. 18.
    J. Fujii, A. Ueno, K. Kitano, S. Tanaka, M. Kadoma, and M. Tada, Complete complementary DNA-derived amino acid sequence of canine cardiac phospholamban, J. Clin. Invest., 79:301 (1987)PubMedCrossRefGoogle Scholar
  19. 19.
    H. K. B. Simmerman, J. H. Collins, J. L. Theibert, A. D. Wegener, and L. R. Jones, Sequence analysis of phospholamban: Identification of phosphorylation sites and two major structural domains, J. Biol. Chem. 261:13333 (1986)PubMedGoogle Scholar
  20. 20.
    M. Tada, M. Kadoma, M. Inui, and J. Fujii, Regulation of Ca2+-pump from cardiac sarcoplasmic reticulum, Methods Enzymol. 157:107 (1988)PubMedCrossRefGoogle Scholar
  21. 21.
    A. D. Wegener, H. K. B. Simmerman, J. Liepnieks, and L. R. Jones, Proteolytic cleavage of phospholamban purified from canine cardiac sarcoplasmic reticulum vesicles, J. Biol. Chem. 261:5154 (1986)PubMedGoogle Scholar
  22. 22.
    D. H. MacLennan, C. J. Brandi, B. Korczak, and N. M. Green, Calcium ATPases: Contribution of molecular genetics to our understanding of structure and function, in: “Proteins of Excitable Membranes, Society of General Physiologists Series” 41:287, B. Hille and D. M. Fambrough, eds, Raven Press, New York (1987)Google Scholar
  23. 23.
    T. Suzuki and J. H. Wang, Stimulation of bovine cardiac sarcoplasmic reticulum Ca2+-pump and blocking of phospholamban phosphorylation and dephosphorylation by a phospholamban monoclonal antibody, J. Biol. Chem. 261:7018 (1986)PubMedGoogle Scholar
  24. 24.
    M. Tada and M. Inui, Regulation of Calcium transport by the ATPase-phospholamban system, J. Mol. Cell. Cardiol. 15:565 (1983)PubMedCrossRefGoogle Scholar
  25. 25.
    W. Osterrieder, G. Brum, J. Hescheler, W. Trautwein, V. Flockerzi, and F. Hofmann, Injection of subunuits of cyclic AMP-dependent protein kinase into cardiac myocytes modurates Ca2+-current, Nature 298:576 (1982)PubMedCrossRefGoogle Scholar
  26. 26.
    Y. Iwasa and M. M. Hosey, Cholinergic antagonism of 3-adrenergic stimulation of cardiac membrane phosphorylation in situ, J. Biol. Chem. 258:4571 (1983)PubMedGoogle Scholar
  27. 27.
    C. J. Le Peuch, J.-C. Guilleux, and J.G. Demaille, Phospholamban phosphorylation in the perfused rat heart is not solely dependent on ß-adrenergic stimulation, FEBS Lett. 114:165 (1980)PubMedCrossRefGoogle Scholar
  28. 28.
    J. P. Lindemann, L. R. Jones, D. R. Hathaway, B. G. Henry, and A. M. Watanabe, ß-adrenergic stimulation of phospholamban phosphorylation and Ca2+-ATPase activity in guinea pig ventricles, J. Biol. Chem. 258:464 (1983)PubMedGoogle Scholar
  29. 29.
    A. Fabiato and F. Fabiato, Relaxing and inotropic effects of cyclic AMP on skinned cardiac cells, Nature 253:556 (1975)PubMedCrossRefGoogle Scholar
  30. 30.
    D. G. Allen and J. R. Blinks, Calcium transients in equorin-injected frog cardiac muscle, Nature 273:509 (1978)PubMedCrossRefGoogle Scholar
  31. 31.
    D. H. MacLennan, C. J. Brandi, B. Korczak, and N. M. Green, Amino-acid sequence of a Ca2++Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence, Nature 316:696 (1985)PubMedCrossRefGoogle Scholar
  32. 32.
    C. J. Brandi, N. M. Green, B. Korczak, and D. H. MacLennan, Two Ca2+ ATPase genes: Homologies and mechanistic implications of deduced amino acid sequences, Cell 44:597 (1986)CrossRefGoogle Scholar
  33. 33.
    M. A. Kirchberger and M. Tada, Effects of adenosine 3′:5′-monophosphate-dependent protein kinase on sarcoplasmic reticulum isolated from cardiac and slow and fast contracting skeletal muscles, J. Biol. Chem. 251:725 (1976)PubMedGoogle Scholar
  34. 34.
    A. O. Jorgensen and L. R. Jones, Localization of phospholamban in slow but not fast canine skeletal muscle fibers, J. Biol. Chem. 261:3775 (1986)PubMedGoogle Scholar
  35. 35.
    J. Fujii, J. Lytton, M. Tada, and D. H. MacLennan, Rabbit cardiac and slow-twitch muscle express the same phospholamban gene, FEBS Lett. 227:51 (1988)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Michihiko Tada
    • 1
  • Masaaki Kadoma
    • 1
  • Junichi Fujii
    • 1
  • Yoshihiro Kimura
    • 1
  • Yoshiyuki Kijima
    • 1
  1. 1.Departments of Medicine and PathophysiologyOsaka University School of MedicineFukushima-ku, Osaka 553Japan

Personalised recommendations