Advertisement

Regulation of the 63-kDa Subunit-Containing Calmodulin-Dependent Cyclic Nucleotide Phosphodiesterase Isozyme

  • Rajendra K. Sharma
  • Guang Yi Zhang
  • Marilyn J. Mooibroek
  • Jerry H. Wang
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 255)

Abstract

Calmodulin-stimulated cyclic nucleotide phosphodiesterase, originally thought to be a single enzyme species in all tissues has been shown to exist in isozymic forms [for review, 1–5]. Homogeneous preparations of calmodulin-dependent phosphodiesterases showing distinct kinetic, regulatory, molecular and immunological properties have been obtained [for review, see (1)]. The well-characterized mammalian isozymes possess low basal (Ca2+-independent) activity and exhibit relatively low affinity towards cyclic AMP. Thus, it appears that these enzymes function most efficiently when cells are stimulated to increase the concentration of both Ca2+ and cAMP and, as such, they are expected to play important roles in integrating the regulatory actions of Ca2+ and cAMP.

Keywords

Dependent Protein Kinase Cyclic Nucleotide Phosphodiesterase Phosphate Incorporation Calmodulin Action Phosphodiesterase Isozyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. K. Sharma, M. Mooibroek, and J. H. Wang, Calmodulin-stimulated cyclic nucleotide phosphodiesterase isozymes, Mol. Asp. Cell. Regulation (Calmodulin) 5:265 (1988).Google Scholar
  2. 2.
    A. Vandermeers, M-C. Vandermeers-Piret, J. Rathe, and J. Christophe, Purification and kinetic properties of two soluble forms of calmodulin-dependent cyclic nucleotide phosphodiesterase from rat pancreas, Biochem. J. 211:341 (1983).PubMedGoogle Scholar
  3. 3.
    K. Purvis, A. Olsen, and V. Hansson, Calmodulin-dependent cyclic nucleotide phosphodiesterase in the immature rat testies, J. Biol. Chem. 256:11434 (1981).PubMedGoogle Scholar
  4. 4.
    H. Hidaka, T. Yamaki, and M. Yamabe, Two forms of Ca2+-dependent cycl 3′:5′-nucleotide phosphodiesterase from human.aorta and effect of free fatty acids, Arch. Biochem. Biophys. 187:315 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    R. S. Hansen and J. A. Beavo, Purification of two calcium/calmodulin-dependent forms of cyclic nucleotide phosphodiesterase by using conformation-specific monoclonal antibody chromatography, Proc. Natl. Acad. Sci. USA 79:2788 (1982).PubMedCrossRefGoogle Scholar
  6. 6.
    R. K. Sharma and J. H. Wang, Regulation of cAMP concentration by calmodulin-dependent cyclic nucleotide phosphodiesterase, Biochem. Cell Biol. 64:1072 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    M. T. Piascik, P. L. Wisler, C. L. Johnson, and J. D. Potter, Ca2+-dependent regulation of guinea pig brain adenylate cyclase, J. Biol. Chem. 255:4176 (1980).PubMedGoogle Scholar
  8. 8.
    A. C. Nairn, H. C. Hemming, and P. Greengard, Protein kinases in the brain, Annu. Rev. Biochem. 54:931 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    K. Fukunaga, M. Yamamoto, E. Tanaka, T. Iwasa, and E. Miyamoto, Phosphorylation and activation of calmodulin-sensitive cyclic nucleotide phosphodiesterase by a brain Ca2+, calmodulin-dependent protein kinase, Life Sci. 35:493 (1984).PubMedCrossRefGoogle Scholar
  10. 10.
    C. Y. Huang, V. Chan, P. B. Chock, J. H. Wang, and R. K. Sharma, Mechanism of activation of cyclic nucleotide phosphodiesterase: requirement of the binding of four Ca2+ to calmodulin for activation, Proc. Natl. Acad. Sci. USA 78:871 (1981).PubMedCrossRefGoogle Scholar
  11. 11.
    J. Kuret and H. Schulman, Mechanism of autophosphorylation of the multifunctional Ca2+/calmodulin dependent protein kinase, J. Biol. Chem. 266:6427 (1985).Google Scholar
  12. 12.
    T. Yamouchi and H. Fujisawa, Self-regulation of calmodulin-dependent protein kinase II and glycogen synthase by autophosphorylation, Biochem. Biophys. Res. Commun. 129:213 (1985).CrossRefGoogle Scholar
  13. 13.
    Y. Hashimoto, C. M. Schworer, R. J. Colbran, and T. R. Soderling, Autophosphorylation of Ca2+/ calmodulin-dependent protein kinase II, J. Biol. Chem. 262:8051 (1987).PubMedGoogle Scholar
  14. 14.
    C. M. Schworer, R. J. Colbran, and T. R. Soderling, Reversible generation of a Ca2+-independent form of Ca2+ (calmodulin)-dependent protein kinase II by an autophosphorylation mechanism, J. Biol. Chem. 261:8581 (1986).PubMedGoogle Scholar
  15. 15.
    N. M. Woods, K. S. R. Cuthbertson, and P. H. Cobbold, Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes, Nature 319:600 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    J. R. Monck, E. E. Reynolds, A. P. Thomas, and J. R. William, Novel kinetics of single cell Ca2+ transients in stimulated hepatocytes and A10 cells measured using fura-2 and fluorescent videomicroscopy, J. Biol. Chem. 263:4569 (1988).PubMedGoogle Scholar
  17. 17.
    P. B. Chock, S. G. Rhee, and E. R. Stadtman, Interconvertible enzyme cascades in cellular regulation, Ann. Rev.Biochem. 49:813 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    A. A. Stewart, T. S. Ingebritsen, A. Manalan, C. B. Klee, and P. Cohen, Discovery of a Ca2+-and calmodulin-dependent protein phosphatase, FEBS Lett. 137:80 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Rajendra K. Sharma
    • 1
  • Guang Yi Zhang
    • 1
  • Marilyn J. Mooibroek
    • 1
  • Jerry H. Wang
    • 1
  1. 1.Cell Regulation Group Department of Medical BiochemistryThe University of CalgaryCalgaryCanada

Personalised recommendations