Advertisement

Activation of Protein Kinase C by Short Chain Phospholipid Micelles

  • Jeffrey M. Walker
  • Julianne J. Sando
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 255)

Abstract

Protein Kinase C (PKC) plays an important role in the regulation of cellular responses to external stimuli (reviewed in 1). Inactive cytosolic kinase translocates to the membrane in response to the phospholipase Cmediated release of diacylglycerol (DAG) and mobilization of Ca2+. Treatment of cells with phorbol esters, a potent class of tumor promoters, also causes a translocation of kinase (2,3). Once active, PKC phosphorylates a large number of both membrane and cytosolic proteins (1). It is unclear whether these phosphorylation events occur at the membrane, or whether the kinase is released from the membrane subsequent to activation.

Keywords

Phorbol Ester Membrane Binding Lipid System Acyl Chain Length High Lipid Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nishizuka, Y. (1986) Science 233, 305–312.PubMedCrossRefGoogle Scholar
  2. 2.
    Kraft, A.S., Anderson, W.B., Cooper, H.L., and Sando, J.J., (1982) J. Biol. Chem. 257, 13193–13196.PubMedGoogle Scholar
  3. 3.
    Kraft, A.S. and Anderson, W.B. (1983) Nature 301, 621–623.PubMedCrossRefGoogle Scholar
  4. 4.
    Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T., Nishizuka, Y., Tamura, A., and Fujii, T. (1979) J. Biochem. 86, 575–578.PubMedGoogle Scholar
  5. 5.
    Sharkey, N.A., Leach, K.L. and Blumberg, P.M. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 607–610.PubMedCrossRefGoogle Scholar
  6. 6.
    Kishimoto, A., Takai, Y., Mori, T., Kikkawa, U., and Nishizuka, Y. (1980) J. Biol. Chem. 255, 2273–2276.PubMedGoogle Scholar
  7. 7.
    Castagna, M., Takai, Y., Kaibuchi, K. Sano, K., Kikkawa, U. and Nishizuka, Y. (1982) J. Biol. Chem. 275, 7847–7851.Google Scholar
  8. 8.
    Hannun, Y.A., Loomis, CR., and Bell, R.M. (1986) J. Biol. Chem. 260, 10039–10043.Google Scholar
  9. 9.
    Hannun, Y.A., Loomis, CR., and Bell, R.M. (1986) J. Biol. Chem. 261, 7184–7190.PubMedGoogle Scholar
  10. 10.
    Ganong, B.R., Loomis, CR., Hannun, Y.A. and Bell, R.M. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 1184–1188.PubMedCrossRefGoogle Scholar
  11. 11.
    Wolf, M., LeVine, H. III, May, W.S. Jr., Cuatrecasas, P., and Sahyoun, N. (1985) Nature 317, 546–549.PubMedCrossRefGoogle Scholar
  12. 12.
    Bazzi, M.D. and Nelsestuen G.L. (1987) Biochemistry 26, 115–122.PubMedCrossRefGoogle Scholar
  13. 13.
    Dennis, E.A. (1983) The Enzymes (Boyer, P.D., ed.) Vol. 16, 307–353, Academic Press, New York.Google Scholar
  14. 14.
    Walker, J.M. and Sando, J.J. (1988) J. Biol. Chem. 263, 4537–4540.PubMedGoogle Scholar
  15. 15.
    Walker, J.M. and Sando, J.J., submitted.Google Scholar
  16. 16.
    Ohnishi, S. and Ito, T. (1974) Biochemistry 13, 881–887.CrossRefGoogle Scholar
  17. 17.
    Das, S. and Rand, R.P. (1986) Biochemistry 25, 2882–2889.PubMedCrossRefGoogle Scholar
  18. 18.
    Nishizuka, Y. (1988) Nature 334, 661–665.PubMedCrossRefGoogle Scholar
  19. 19.
    Huang, K.P., Nakabayashi, H., and Huang, F.L. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 8535–8539.PubMedCrossRefGoogle Scholar
  20. 20.
    Jaken, S. and Kiley, S.C. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 4418–4422.PubMedCrossRefGoogle Scholar
  21. 21.
    Sekiguchi, K., Tsukuda, M., Ogita, K., Kikkawa, U., and Nishizuka, Y. (1987) Biochem. Biophys. Res. Commun. 145, 797–802.PubMedCrossRefGoogle Scholar
  22. 22.
    Kikkawa, U., Takai, Y., Minakuchi, R., Inohara, S., and Nishizuka, Y. (1982) J. Biol. Chem. 257, 13341–13348.PubMedGoogle Scholar
  23. 23.
    Bazzi, M.D. and Nelsestuen G.L. (1987) Biochemistry 26, 1974–1982.PubMedCrossRefGoogle Scholar
  24. 24.
    Bazzi, M.D. and Nelsestuen G.L. (1987) Biochemistry 26, 5002–5008.PubMedCrossRefGoogle Scholar
  25. 25.
    Newton, A.C., and Koshland, D.E. (1987) J. Biol. Chem. 262, 10185–10188.PubMedGoogle Scholar
  26. 26.
    Huang, K.P., Chan, K.F.J., Singh, T.J., Nakabayashi, H., and Huang, F.L. (1986) J. Biol. Chem. 261, 12134–12140.PubMedGoogle Scholar
  27. 27.
    Tausk, R.J.M., Van Esch, J., Karmiggelt, J., Voordouw, G., and Overbeek J.Th.G. (1974) Biophys. Chem. 1, 184–203.PubMedCrossRefGoogle Scholar
  28. 28.
    Hoshijima, M., Kikuchi, A., Tanimoto, T., Kaibuchi, K., and Takai, Y. (1986) Cancer Res. 46, 3000–3004.PubMedGoogle Scholar
  29. 29.
    Lee, M. and Bell, R.M. (1986) J. Biol. Chem. 261, 14867–14870.PubMedGoogle Scholar
  30. 30.
    Tanford, C. (1980) The Hydrophobic Effect: Formation of Micelles and Biological Membranes, John Wiley & Sons, New York.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Jeffrey M. Walker
    • 1
  • Julianne J. Sando
    • 1
  1. 1.Department of Pharmacology Program in Biophysics, and Cancer CenterUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations