Advertisement

Characterization of the Calmodulin-Binding Domain of Calcineurin Deduced from a Complementary DNA Clone

  • Randall L. Kincaid
  • Brian M. Martin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 255)

Abstract

An essential role for Ca2+- and calmodulin (CaM)-dependent events in neuronal transduction is suggested by the high amounts of this Ca2+binding protein in the central nervous system. Further, several enzymes that it modulates (adenylate cyclase, cyclic nucleotide phosphodiesterase, protein kinase and the phosphoprotein phosphatase, calcineurin) have their highest concentrations in the brain, implicating Ca2+- regulated cyclic nucleotide and phosphoprotein metabolism in intracellular signaling. Importantly, the multifunctional CaM-dependent protein kinase is known to be the major protein in post-synaptic densities1,2, consistent with a critical function for phosphoproteins in neurotransmission

Keywords

Myosin Light Chain Kinase Cyclic Nucleotide Phosphodiesterase Phosphoprotein Phosphatase Muscle Myosin Light Chain Kinase Smooth Muscle Myosin Light Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. B. Kennedy, M. K. Bennet, and N. E. Erondu, Biochemical and immunochemical evidence that the major postsynaptic density protein is a subunit of a calmodulin-dependent protein kinase, Proc. Nat. Acad. Sci. U.S.A. 80:7357 (1983).CrossRefGoogle Scholar
  2. 2.
    P. T. Kelly, T. L. McGuiness, and P. Greengard, Evidence that the major postsynaptic density protein is a component of a Ca2+/ calmodulin-dependent protein kinase, Proc. Nat. Acad. Sci. U.S.A. 81:945 (1984).CrossRefGoogle Scholar
  3. 3.
    J. H. Wang and R. Desai, Modulator binding protein: Bovine brain protein exhibiting the Ca2+-dependent association with the protein modulator of cyclic nucleotide phosphodiesterase, J. Biol. Chem. 252:4175 (1977).PubMedGoogle Scholar
  4. 4.
    C. B. Klee and M. H. Krinks, Purification of the cyclic 3′,5′-nucleotide phosphodiesterase inhibitory protein by affinity chromatography on activator protein coupled to Sepharose, Biochemistry 17:120 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    R. W. Wallace, T. J. Lynch, E. A. Tallant, and W. Y. Cheung, Purification and characterization of an inhibitor protein of brain adenylate cyclase and cyclic nucleotide phosphodiesterase, J. Biol. Chem. 254:377 (1979).PubMedGoogle Scholar
  6. 6.
    A. A. Stewart, T. S. Ingebritsen, A. Manalan, C. B. Klee, and P. Cohen, Discovery of a Ca2+-and calmodulin-dependent protein phosphatase. Probable identity with calcineurin (CaM-BP80), FEBS Lett. 137:80 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    S.-D. Yang, E. A. Tallant, and W. Y. Cheung, Calcineurin is a calmodulin-dependent protein phosphatase, Biochem. Biophys. Res. Commun. 106:1419 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    M. M. King, C. Y. Huang, P. B. Chock, A. C. Nairn, H. C. Hemmings, Jr., K.-F. J. Chan, and P. Greengard, Mammalian brain phosphoproteins as substrates for calcineurin, J. Biol. Chem. 259:8080 (1984).PubMedGoogle Scholar
  9. 9.
    C. B. Klee, T. H. Crouch, and M. H. Krinks, Calcineurin: A calcium-and calmodulin-binding protein of the nervous system, Proc. Nat. Acad. Sci. U.S.A. 79:6270 (1979).CrossRefGoogle Scholar
  10. 10.
    M. M. King and C. Y. Huang, The calmodulin-dependent activation and deactivation of the phosphoprotein phosphatase, calcineurin, and the effects of nucleotides, pyrophosphate and divalent metal ions, J. Biol. Chem. 259:8847 (1984).PubMedGoogle Scholar
  11. 11.
    C. J. Pallen and J. H. Wang, Regulation of calcineurin by metal ions. Mechanism of activation by Ni2+ and an enhanced response to Ca2+/ calmodulin, J. Biol. Chem. 259:6134 (1984).PubMedGoogle Scholar
  12. 12.
    M. M. King and C. Y. Huang, Activation of calcineurin by nickel ions, Biochem. Biophys. Res. Commun. 114:956 (1983).CrossRefGoogle Scholar
  13. 13.
    M. Politino and M. M. King, Calcium-and calmodulin-sensitive interactions of calcineurin with phospholipids, J. Biol. Chem. 262:10109 (1987).PubMedGoogle Scholar
  14. 14.
    A. A. Stewart, T. S. Ingebritsen, and P. Cohen, The protein phosphatases involved in cellular regulation. 5. Purification and properties of a Ca2+/calmodulin-dependent protein phosphatase (2B) from rabbit skeletal muscle, Eur. J. Biochem. 132:289 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    R. L. Kincaid, H. Takayama, M. L. Billingsley, and M. V. Sitkovsky, Differential expression of calmodulin-binding proteins in B-, T-lymphocytes and thymocytes, Nature 330:176 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    J. G. Wood, R. W. Wallace, J. N. Whitaker, and W. Y. Cheung, Immunocytochemical localization of calmodulin and a heat-labile calmodulin-binding protein (CaMBPso) in basal ganglia of mouse brain, J. Cell Biol. 84:66 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    R. L. Kincaid, C. D. Balaban, and M. L. Billingsley, Differential localization of calmodulin-dependent enzymes in brain: Evidence for selective expression of cyclic nucleotide phosphodiesterase in specific neurons, Proc. Nat. Acad. Sci. U.S.A. 84:1118 (1987).CrossRefGoogle Scholar
  18. 18.
    R. A. Young and R. W. Davis, Efficient isolation of genes by using antibody probes, Proc. Nat. Acad. Sci. U.S.A. 80:1194 (1983).CrossRefGoogle Scholar
  19. 19.
    R. L. Kincaid, Preparation, characterization and properties of affinity-purified antibodies to calmodulin-dependent cyclic nucleotide phosphodiesterase and the protein phosphatase calcineurin, Methods in Enzymol. ( Corbin and Johnson, eds.) 159:627 (1988).Google Scholar
  20. 20.
    T. Maniatis, E. F. Fritsch, and J. Sambrook in: “Molecular cloning; a laboratory manual” Cold Spring Harbor, NY (1982).Google Scholar
  21. 21.
    E. Y. Chen and P. H. Seeburg, Supercoil sequencing: a fast and simple method for sequencing plasmid DNA, DNA 4:165 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    F. Sanger, S. Nicklen, and A. R. Coulson, DNA sequencing with chain-terminating inhibitors, Proc. Nat. Acad. Sci. U.S.A. 74:5463 (1977).CrossRefGoogle Scholar
  23. 23.
    R. L. Kincaid, V. C. Manganiello, C. E. Odya, J. C. Osborne, Jr., I. E. Stith-Coleman, M. A. Danello, and M. Vaughan, Purification and properties of calmodulin-stimulated phosphodiesterase from mammalian brain, J. Biol. Chem. 259:5158 (1984).PubMedGoogle Scholar
  24. 24.
    M. L. Billingsley, K. R. Pennypacker, C. G. Hoover, D. J. Brigati, and R. L. Kincaid, A rapid and sensitive method for detection and quantification of calcineurin and calmodulin-binding proteins using biotinylated calmodulin, Proc. Nat. Acad. Sci. U.S.A. 82:7585 (1985).CrossRefGoogle Scholar
  25. 25.
    R. L. Kincaid and M. Vaughan, Purification and properties of calmodulin-activated cyclic nucleotide phosphodiesterase from brain, Methods in Enzymol. ( Corbin and Johnson, eds.) 159:557 (1988).Google Scholar
  26. 26.
    R. L. Kincaid, M. S. Nightingale, and B. M. Martin, Characterization of a cDNA clone encoding the calmodulin-binding domain of mouse brain calcineurin, Proc. Nat. Acad. Sci. U.S.A., in press (1988).Google Scholar
  27. 27.
    N. Berndt, D. G. Campbell, F. B. Caudwell, P. Cohen, E. F. da Cruz e Silva, O. B. da Cruz e Silva, and P. T. W. Cohen, Isolation and sequence analysis of a cDNA clone encoding a type-1 protein phosphatase catalytic subunit: homology with protein phosphatase 2A, FEBS Lett. 223:340 (1987).PubMedCrossRefGoogle Scholar
  28. 28.
    O. B. Da Cruz e Silva, S. Alemany, D. G. Campbell, and P. T. W. Cohen, Isolation and sequence analysis of a cDNA encoding the entire catalytic subunit of a type-2A protein phosphatase, FEBS Lett. 221:415 (1987).PubMedCrossRefGoogle Scholar
  29. 29.
    V. Guerriero, Jr., M. A. Russo, N. J. Olson, J. A. Putkey, and A. R. Means, Domain organization of chicken gizzard myosin light chain kinase deduced from a cloned cDNA, Biochemistry 25:8372 (1986).PubMedCrossRefGoogle Scholar
  30. 30.
    R. M. Hanley, A. R. Means, T. Ono, B. E. Kemp, K. E. Burgin, N. Waxham, and P. T. Kelly, Functional analysis of a complementary DNA for the 50 kDa subunit of calmodulin kinase II, Science 237:293 (1987).PubMedCrossRefGoogle Scholar
  31. 31.
    P. James, M. Maeda, R. Fischer, A. K. Verma, J. Krebs, J. T. Penniston, and E. Carafoli, Identification and primary structure of a calmodulin binding domain of the Ca2+ pump of human erythrocytes, J. Biol. Chem. 263:2905 (1988).PubMedGoogle Scholar
  32. 32.
    M. A. Conti and R. S. Adelstein, The relationship between calmodulin binding and phosphorylation of smooth muscle myosin kinase by the catalytic subunit of 3′:5′ cAMP-dependent protein kinase, J. Biol. Chem. 256:3178 (1981).PubMedGoogle Scholar
  33. 33.
    J. A. Cox, M. Comte, J. E. Fitton, and F. Degrado, The interaction of calmodulin with amphiphilic peptides, J. Biol. Chem. 260:2527 (1985).PubMedGoogle Scholar
  34. 34.
    P. Y. Chou and G. D. Fasman, Prediction of the secondary structure of proteins from their amino acid sequence, Adv. in Enzymol. 47:45 (1978).Google Scholar
  35. 35.
    P. Cohen, A. Burchell, J. G. Foulkes, P. T. W. Cohen, T. C. Vanaman, and A. L. Nairn, Identification of the Ca2+-dependent modulator protein as the fourth subunit of rabbit skeletal muscle Phosphorylase kinase, FEBS Lett. 92:287 (1978).PubMedCrossRefGoogle Scholar
  36. 36.
    D. C. LaPorte, W. A. Toscano, Jr., and D. A. Storm, Cross-linking of iodine-125-labelled, calcium-dependent regulatory protein to the Ca2+-sensitive phosphodiesterase purified from bovine heart, Biochemistry, 18: 2820 (1979).PubMedCrossRefGoogle Scholar
  37. 37.
    R. L. Kincaid and M. Vaughan, Molecular and regulatory properties of calmodulin-dependent phosphodiesterase from brain, in: “Calcium and Cell Function”, vol.VI, W. Y. Cheung, ed. Academic Press, Orlando (1986).Google Scholar
  38. 38.
    R. K. Sharma and J. H. Wang, Purification and characterization of bovine lung calmodulin-dependent cyclic nucleotide phosphodiesterase. An enzyme containing calmodulin as a subunit, J. Biol. Chem. 261: 14160 (1986).PubMedGoogle Scholar
  39. 39.
    A. P. Kwiatkowski, D. J. Shell, M. M. King, The role of autophos-phorylation in activation of the type II calmodulin-dependent protein kinase, J. Biol. Chem. 263:6484 (1988).PubMedGoogle Scholar
  40. 40.
    B. Kemp, R. Pearson, V. Guerriero, Jr., I. Bagchi, and A. R. Means, The calmodulin binding domain of chicken smooth muscle myosin light chain kinase contains a pseudosubstrate sequence, J. Biol. Chem. 262:2542 (1987).PubMedGoogle Scholar
  41. 41.
    D. L. Merat, Z. Y. Hu, T. E. Carter, and W. Y. Cheung, Bovine brain calmodulin-dependent protein phosphatase: regulation of subunit A activity by calmodulin and subunit B, J. Biol. Chem. 260:11053 (1985).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Randall L. Kincaid
    • 1
  • Brian M. Martin
    • 2
    • 3
  1. 1.Section on Immunology, Laboratory of Physiologic and Pharmacologic StudiesNational Institute on Alcohol Abuse and AlcoholismUSA
  2. 2.Molecular Neurogenetics Section Clinical Neurosciences BranchNational Institute of Mental HealthUSA
  3. 3.Alcohol, Drug Abuse, and Mental Health AdministrationBethesdaUSA

Personalised recommendations