Skip to main content

A Model for Caldesmon in Latch-Bridge Formation in Smooth Muscle

  • Chapter
Calcium Protein Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 255))

Abstract

The primary mechanism of regulation of smooth muscle contraction involves the Ca+-dependent and reversible phosphorylation of myosin1. Stimulation of the smooth muscle cell leads to an elevation of cytosolic free Ca2+ concentration whereupon Ca2+ binds to calmodulin. Formation of the Ca2+-calmodulin complex is accompanied by a conformational change in the Ca2+-binding protein which is then capable of interaction with a target enzyme, in this case myosin light chain kinase (MLCK). The binding of calmodulin converts the kinase from the inactive apoenzyme form found in the resting cell to the active Ca2+-calmodulin-MLCK ternary complex. The active kinase catalyzes transfer of the terminal phosphoryl group of ATP to serine-19 on each of the two 20 kDa light chains of myosin. In the phosphorylated state, the MgATPase activity of myosin is substantially enhanced by actin. This biochemical parameter is thought to reflect a cross-bridge cycling mechanism whereby actin and myosin filaments slide relative to one another, the required energy being provided by the hydrolysis of ATP. At the level of the intact cell this process would result in force development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. J. Hartshorne, Biochemistry of the contractile process in smooth muscle, in: “Physiology of the Gastrointestinal Tract”, L. R. Johnson, ed., pp. 423–482, Raven Press, New York (1987).

    Google Scholar 

  2. T. T. DeFeo and K. G. Morgan, Calcium-force relationships as detected with aequorin in two different vascular smooth muscles of the ferret, J. Physiol. 369:269 (1985).

    PubMed  CAS  Google Scholar 

  3. D. A. Williams and F. S. Fay, Calcium transients and resting levels in isolated smooth muscle cells as monitored with quin 2, Am. J. Physiol. 250:C779 (1986).

    Google Scholar 

  4. K. E. Kamm and J. T. Stull, The function of myosin and myosin light chain kinase phosphorylation in smooth muscle, Annu. Rev. Pharmacol. Toxicol. 25:593 (1985).

    Article  PubMed  CAS  Google Scholar 

  5. P. K. Ngai, G. C. Scott-Woo, M. S. Lim, C. Sutherland, and M. P. Walsh, Activation of smooth muscle myosin Mg2+-ATPase by native thin filaments and actin/tropomyosin, J. Biol. Chem. 262:5352 (1987).

    PubMed  CAS  Google Scholar 

  6. M. O. Aksoy, S. Mras, K. E. Kamm, and R. A. Murphy, Ca2+, cAMP and changes in myosin phosphorylation during contraction of smooth muscle, Am. J. Physiol. 245:C255 (1983).

    PubMed  CAS  Google Scholar 

  7. C-M. Hai and R. A. Murphy, Cross-bridge phosphorylation and regulation of latch state in smooth muscle, Am. J. Physiol. 254:C99 (1988).

    PubMed  CAS  Google Scholar 

  8. K. Sobue, Y. Muramoto, M. Fujita, and S. Kakiuchi, Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin, Proc. Natl. Acad. Sci. U.S.A. 78:5652 (1981).

    Article  PubMed  CAS  Google Scholar 

  9. P. K. Ngai and M. P. Walsh, Inhibition of smooth muscle actin-activated myosin Mg2+-ATPase activity by caldesmon, J. Biol. Chem. 259:13656 (1984).

    PubMed  CAS  Google Scholar 

  10. W. Lehman, Caldesmon association with smooth muscle thin filaments isolated in the presence and absence of calcium, Biochim. Biophys. Acta. 885:88 (1986).

    Article  PubMed  CAS  Google Scholar 

  11. W. P. Lynch, V. M. Riseman, and A. Bretscher, Smooth muscle caldesmon is an extended flexible monomeric protein in solution that can readily undergo reversible intra-and intermolecular sulfhydryl cross-linking, J. Biol. Chem. 262:7429 (1987).

    PubMed  CAS  Google Scholar 

  12. A. Szpacenko and R. Dabrowska, Functional domains of caldesmon, FEBS Lett. 202:182 (1986).

    Article  PubMed  CAS  Google Scholar 

  13. T. Fujii, M. Imai, G, C. Rosenfeld, and J. Bryan, Domain mapping of chicken gizzard caldesmon, J. Biol. Chem. 262:2757 (1987).

    PubMed  CAS  Google Scholar 

  14. G. C. Scott-Woo and M. P. Walsh, Characterization of the autophosphory-lation of chicken gizzard caldesmon, Biochem. J. 255, in press (1988).

    Google Scholar 

  15. K. Sobue, K. Morimoto, M. Inui, K. Kanda, and S. Kakiuchi, Control of actin-myosin interaction of gizzard smooth muscle by calmodulin-and caldesmon-linked flip-flop mechanism, Biomed. Res. 3:188 (1982).

    CAS  Google Scholar 

  16. M. P. Walsh, R. Bridenbaugh, D. J. Hartshorne, and W. G. L. Kerrick, Phosphorylation-dependent activated tension in skinned gizzard muscle fibers in the absence of Ca2+, J. Biol. Chem. 257:5987 (1982).

    PubMed  CAS  Google Scholar 

  17. M. P. Walsh, Caldesmon, a major actin-and calmodulin-binding protein of smooth muscle, Prog. Clin. Biol. Res. 245:119 (1987).

    PubMed  CAS  Google Scholar 

  18. P. K. Ngai and M. P. Walsh, Properties of caldesmon isolated from chicken gizzard, Biochem. J. 230:695 (1985).

    PubMed  CAS  Google Scholar 

  19. P. K. Ngai and M. P. Walsh, The effects of phosphorylation of smooth-muscle caldesmon, Biochem. J. 244:417 (1987).

    PubMed  CAS  Google Scholar 

  20. G. C. Scott-Woo and M. P. Walsh, Autophosphorylation of smooth-muscle caldesmon, Biochem. J. 252:463 (1988).

    PubMed  CAS  Google Scholar 

  21. M. S. Lim and M. P. Walsh, The effects of caldesmon on the ATPase activities of rabbit skeletal-muscle myosin, Biochem. J. 238:523 (1986).

    PubMed  CAS  Google Scholar 

  22. M. Ikebe and S. Riordan, Binding of caldesmon to smooth muscle myosin, J. Biol. Chem. 263:3055 (1988).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Walsh, M.P., Sutherland, C. (1989). A Model for Caldesmon in Latch-Bridge Formation in Smooth Muscle. In: Hidaka, H., Carafoli, E., Means, A.R., Tanaka, T. (eds) Calcium Protein Signaling. Advances in Experimental Medicine and Biology, vol 255. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5679-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5679-0_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5681-3

  • Online ISBN: 978-1-4684-5679-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics