Structure of the Rat Vitamin D-Induced Calbindin-D9K Gene and Evolution of the EF-Hand Calcium-Binding Protein Family

  • Christine Perret
  • Nourredine Lomri
  • Monique Thomasset
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 255)


Based upon their number of calcium sites, two intracellular vitamin D-regulated calcium-binding proteins, CaBPs, (Calbindin-D9K and 28K) are expressed in specific target organs of the rat (1,2). CaBP9K was first located in the absorptive cells of the duodenum and has two calcium-binding sites. CaBP28K, which is concentrated in the distal tubules of kidney and in specific neurons of the nervous system, has four functional calcium-binding sites. Only the CaBP28K is present in birds and is expressed in the intestine, the kidney and specific neurons of the nervous system. Both CaBP9K and 28K belong to the calciprotein family which includes calmodulin, troponin C, parvalbumin (3). In this family, each Ca-binding site is organized into a consensus structure called by Kretsinger an EF-hand which consists of a helix, a loop and a helix. Calcium is bound to the loop region (3).


Intron Position Calcium Site Aminoacid Residue Triplication Event Drosophila Myosin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Thomasset, C.O. Parkes, P. Cuisinier-Gleizes. Am. J. Physiol. 243:E483 (1982).PubMedGoogle Scholar
  2. 2.
    R.H. Wassermann, C.S. Fullmer. In Calcium and Cell Function (Cheung W.Y. ed.) Academic Press, New York, vol. 2 p. 175 (1982).Google Scholar
  3. 3.
    R.H. Kretsinger. Critical Review in Biochemistry: 119 (1980).Google Scholar
  4. 4.
    M. Goodman, J.F. Pechere, J. Haiech, J.G. Démaille. J. Mol. Evol. 13:331 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    C. Perret, N. Lomri, M. Thomasset. J. Mol. Evol. 27:351 (1988).PubMedCrossRefGoogle Scholar
  6. 6.
    C. Desplan, O. Heidmann, J.W. Lillie, C. Auffray, M. Thomasset. J. Biol. Chem. 258:13502 (1983).PubMedGoogle Scholar
  7. 7.
    C. Perret, N. Lomri, N. Gouhier, C. Auffray, M. Thomasset. Eur. J. Biochem. 172:43 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    D. Szebenyi, K. Moffat. J. Biol. Chem. 261:8761 (1986).PubMedGoogle Scholar
  9. 9.
    B. Calabretta et al. J. Biol. Chem. 261:12628 (1986).PubMedGoogle Scholar
  10. 10.
    V. Gerke, K. Weber. EMBO J. 4:2917 (1985).PubMedGoogle Scholar
  11. 11.
    J.R. Dorin et al. Nature 326:614 (1987).PubMedCrossRefGoogle Scholar
  12. 12.
    K. Odink et al. Nature 330:80 (1987).PubMedCrossRefGoogle Scholar
  13. 13.
    R. Barraclough et al. J. Mol. Biol. 198:13 (1987).PubMedCrossRefGoogle Scholar
  14. 14.
    S. Ferrari et al. J. Biol. Chem. 267:8325 (1987).Google Scholar
  15. 15.
    E. Lagasse, R.G. Clerc. Mol. & Cell Biol. 8:2402 (1988).Google Scholar
  16. 16.
    C.S. Craik, W.J. Rutter, R. Flettrick. Science 220:1125 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    C. Perret, C. Desplan, M. Thomasset. Eur. J. Biochem. 150:211 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    Hunziker. Proc. Natl. Acad. Sci USA 83:7578 (1986).PubMedCrossRefGoogle Scholar
  19. 19.
    Yamakuni et al. Nucl. Ac. Res. 14:6768 (1986).CrossRefGoogle Scholar
  20. 20.
    Kuwano et al. Med. Acad. Res. 12:7455 (1984).Google Scholar
  21. 21.
    W. Gilbert. Nature 271:501 (1978).PubMedCrossRefGoogle Scholar
  22. 22.
    P.W. Wilson, M. Hardin, V. Potei, G. Pattyn, D.E.M. Lawson. J. Mol. Biol. 200:615 (1988).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Christine Perret
    • 1
  • Nourredine Lomri
    • 1
  • Monique Thomasset
    • 1
  1. 1.INSERM U.120Le VésinetFrance

Personalised recommendations