Structural Organization of Calmodulin Genes in the Rat Genome

  • Hiroshi Nojima
  • Hirofumi Sokabe
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 255)

Abstract

Calmodulin plays multifunctional roles in living cells through the regulation of calcium interactions with a variety of fundamental enzymes. In order to know how many genes for calmodulin should exist to realize its mutlifunctional roles, we have investigated the structural organizations of calmodulin genes in the rat genome1–8.

Keywords

Codon Mold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    H. Nojima and H. Sokabe, Structure of rat calmodulin processed genes with implications for a mRNA-mediated process of insertion. J. Mol. Biol. 190:391(1986).PubMedCrossRefGoogle Scholar
  2. (2).
    H. Nojma, K. Kishi and H. Sokabe, Organization of calmodulin genes in the spontaneously hypertensive rat. J. Hypertens. 4(Suppl 3): S275(1986).Google Scholar
  3. (3).
    H. Nojima and H. Sokabe, A peculiar repetitive sequence in the rat genome. FEBS Lett 207:227(1986).PubMedCrossRefGoogle Scholar
  4. (4).
    H. Nojima and H. Sokabe, Structure of a gene for rat calmodulin. J. Mol. Biol. 193:439(1987).PubMedCrossRefGoogle Scholar
  5. (5).
    H. Nojima, K. Kishi and H. Sokabe, Multiple calmodulin mRNA species are derived from two distinct genes. Mol. Cell. Biol. 7:1873(1987).PubMedGoogle Scholar
  6. (6).
    H. Nojima, Molecular evolution of calmodulin gene. FEBS Lett 217:187(1987)PubMedCrossRefGoogle Scholar
  7. (7).
    H. Nojima and H. Sokabe, Genes and pseudogenes for calmodulin in the spontaneously hypertensive rat. J. Hypertens. 6(suppl 6): in press.Google Scholar
  8. (8).
    H. Nojima, Tissue-specific transcription of three distinct rat calmodulin genes. Submitted for publication.Google Scholar
  9. (9).
    A.A. Sherbany, A.S. Parent and J. Brosius, Rat calmodulin cDNA. DNA 6:267(1987).PubMedCrossRefGoogle Scholar
  10. (10).
    B. SenGupta, F. Friedberg and S.D. Detera-Waldleigh, Molecular analysis of human and rat calmodulin cDNA clones. J. Biol. Chem. 262: 16663(1987).PubMedGoogle Scholar
  11. (11).
    E.J. Warwrynczak and R.N. Perham, Isolation and nucleotide sequence of cDNA encoding human calmodulin. Biochem. Int. 9:177(1984).Google Scholar
  12. (12).
    J.A. Putkey, K.F Ts’ui, T. Tanaka, L. Lagace, J.P. Stein, E.C. Lai and A.R. Means, Chicken calmodulin genes. J. Biol. Chem. 258:11864(1983).PubMedGoogle Scholar
  13. (13).
    Y. Chien and I.B. Dawid, Isolation and characterization of calmodulin genes from Xenopus laevis. Mol. Cell. Biol. 4:507(1984).PubMedGoogle Scholar
  14. (14).
    L. Lagace, T. Chandra, S.L.C. Woo and A.R. Means, Identification of multiple species of calmodulin mRNA using a full length cDNA. J. Biol. Chem. 258:1684(1983).PubMedGoogle Scholar
  15. (15).
    V.L. Smith, K.E. Doyle, J.F. Maune, R.P. Munjaal and K. Beckingham, Structure and Sequence of the Drosophila melanogaster calmodulin gene. J. Mol.Biol. 196:471(1987).PubMedCrossRefGoogle Scholar
  16. (16).
    M.K. Yamanaka, J.A. Saugstad, O. Hanson-Painton, B.J. McCarthy and S.L. Tobin, Structure and expression of the Drosophila calmodulin gene. Nuc. Acids Res. 15:3335(1987).CrossRefGoogle Scholar
  17. (17).
    D.O. Hardy, P.K. Bender and R.H. Kretsinger, Two calmodulin genes are expressed in Arbacia punctulata. J. Mol. Biol. 199:223(1988).PubMedCrossRefGoogle Scholar
  18. (18).
    J.H. Schwartz and M.E. Swanson, Dissection of tissues for characterizing nucleic acids from Aplysia. Methods Enzymol. 139:277(1987).PubMedCrossRefGoogle Scholar
  19. (19).
    H. Goldhagen and M. Clarke, Identification of the single gene for calmodulin in Dictyostelium discoidium. Mol. Cell.Biol. 6: 1851(1986).PubMedGoogle Scholar
  20. (20).
    C. Tschudi, A.S. Young, L. Ruben, C.L. Patton and F.F. Richards, Calmodulin genes in trypanosomes are tandemly repeated and produce multiple mRNAs with a common 5’ leader sequence. Proc. Natl. Acad. Sci. U.S.A. 82:3998(1985).PubMedCrossRefGoogle Scholar
  21. (21).
    T.N. Davis, M.S. Urdea, F.R. Masiarz and J. Thorner, Isolation of the yeast calmodulin gene. Cell 47:423(1986).PubMedCrossRefGoogle Scholar
  22. (22).
    T. Takeda and M. Yamamoto, Analysis and in vivo disruption of the gene coding for calmodulin in Schizoaccharomyces pombe. Proc. Natl. Acad. Sci. U.S.A. 84:3580(1987).PubMedCrossRefGoogle Scholar
  23. (23).
    R.C.M. Simmen, T. Tanaka, K.F. Tsfui, J.A. Putkey, M.J. Scott, E.C. Lai and A.R. Means, The structural organization of the chicken calmodulin gene. J. Biol. Chem. 260: 907(1987).Google Scholar
  24. (24).
    M. Salvato, J. Sulston, D. Abertson and S. Brenner, A novel calmodulin-like gene from the nematode Caenorhabditis elegance. J. Mol. Biol. 190:281(1986).PubMedCrossRefGoogle Scholar
  25. (25).
    S.H. Hardin, C.D. Carpenter, P.E. Hardin, A.M. Bruskin and W.H. Klein, Structure of the Spec 1 gene encoding a major calcium-binding protein in the embryonic ectoderm of the sea urchin, Strongylocentrotus purpuratus. J. Mol. Biol. 186:243(1985).PubMedCrossRefGoogle Scholar
  26. (26).
    Y. Nabeshima, Y. Fujii-Kuriyama, M. Muramatsu and K. Ogata, Alternative transcription and two modes of splicing result in two myosin light chains from one gene. Nature 308:333(1984).PubMedCrossRefGoogle Scholar
  27. (27).
    B. Robert, P. Daubas, M. Akimenko, A. Cohen, I. Garner, J. Guenet and M. Buckingham, A single locus in the mouse encodes both myosin light chains 1 and 3, a second locus corresponds to a related pseudogene. Cell 39:129(1984).PubMedCrossRefGoogle Scholar
  28. (28).
    A. Falkenthal, V.P. Parker and N. Davidson, Developmental variations in the splicing pattern of transcripts from the Drosophila gene encoding myosin alkali light chain result in different carboxylterminal amino acid sequences. Proc. Natl. Acad. Sci. U.S.A. 82:449(1985).PubMedCrossRefGoogle Scholar
  29. (29).
    M.W. Berchtold, P. Epstein, A.L. Beaudet, M.E. Payne, C.W. Heinzman and A.R. Means, Structural organization and chromosomal assignment of the parvalbumin gene. J. Biol.Chem. 262:8696(1987).PubMedGoogle Scholar
  30. (30).
    Y. Emori, S. Ohno, M. Tobita and K. Suzuki, Gene structure of calcium-dependent protease retains the ancestral organization of the calcium-binding protein gene. FEBS Lett. 194:249(1986).PubMedCrossRefGoogle Scholar
  31. (31).
    W. Gilbert, Why genes in pieces?, Nature 271:501(1978)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Hiroshi Nojima
    • 1
  • Hirofumi Sokabe
    • 1
  1. 1.Department of PharmacologyJichi Medical SchoolMinamikawachi-machi, Tochigi-kenJapan

Personalised recommendations