Advertisement

Molecular Analysis of Calmodulin and Smooth Muscle Myosin Light Chain Kinase

  • Anthony R. Means
  • Mark F. A. VanBerkum
  • Samuel E. George
  • Indrani C. Bagchi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 255)

Abstract

Of all the known members of the superfamily of proteins that utilize the EF-hand helix-loop-helix configuration to bind Ca++, calmodulin is unique. This intracellular receptor is ubiquitous in eukaryotes and is highly conserved at the primary amino acid sequence level. In vertebrates only a single conservative amino acid substitution exists between fish and humans 1. Even between primitive eukaryotes such as yeasts and higher vertebrate species, the proteins show at least 80% amino acid identity. In addition calmodulin serves as the obligatory Ca++-dependent activator of a variety of enzymes, exists in enzyme and organelle complexes in the Ca free state and is associated with several intracellular structural proteins. These characteristics are in sharp contrast to other members of this superfamily such as troponin C, calbindins, S-100, calretinin, calcineurin B and myosin light chains. The function of these proteins, when known, tends to be highly specific. Distribution is largely restricted to vertebrates and even within members of this phylum, is found only in selected cell types. The one exception to this generalization is calcineurin B which enjoys a much broader species distribution. However this breadth may also be related to calmodulin since calcineurin is the only known Ca /calmodulin-dependent protein phosphatase. Indeed some calmodulin-dependent enzymes are more widely distributed among phyla and between cell types of a given organism than are the other members of the calmodulin superfamily 2.

Keywords

Myosin Light Chain Myosin Light Chain Kinase Peptide Analog Calmodulin Binding Calcium Entry Blocker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Lagace’, T. Chandra, S.L.C. Woo, and A.R. Means, J. Biol. Chem. 258:1684 (1983).PubMedGoogle Scholar
  2. 2.
    D. Bartlet, S. Fidel, L.H. Farber, D.J. Wolff, and R.L. Hammel1, Proc. Natl. Acad. Sci. USA 85:3284 (1983).Google Scholar
  3. 3.
    T.N. Davis, M.S. Urdea, F.R. Masiarz, and J. Thorner, Cell 47:423 (1986).PubMedCrossRefGoogle Scholar
  4. 4.
    T. Takeda and M. Yamamoto, Proc. Natl. Acad. USA 84:3580 (1987).CrossRefGoogle Scholar
  5. 5.
    J.A. Putkey, K.F. Ts’ui, T. Tanaka, L. Lagace’, J.P. Stein, E.C. Lai, and A.R. Means, J. Biol. Chem. 258:11864 (1983).PubMedGoogle Scholar
  6. 6.
    D.J. Mangelsdorf, B.S. Komm, D.P. McDonnell, J.W. Pike, and M.R. Haussler, Biochemistry 26:8332 (1987).PubMedCrossRefGoogle Scholar
  7. 7.
    H. Nojima, K. Kishi, and H. Sokabe, Mol. Cell. Biol. 7:1873 (1987).PubMedGoogle Scholar
  8. 8.
    A. Sherbany, A.S. Parent, and J. Brosius, DNA 6:267 (1987).PubMedCrossRefGoogle Scholar
  9. 9.
    E.J. Wawrzynczak and R.N. Perham, Biochem. Int. 9:177 (1984).PubMedGoogle Scholar
  10. 10.
    B. Sen Gupta, F. Friedberg, and S.D. Detera-Wadleigh, J. Biol. Chem. 262:16663 (1987).Google Scholar
  11. 11.
    R. Fischer, M. Koller, M. Flura, S. Mathews, M.-A. Strehler-Page, J. Krebs, J.T. Penniston, E. Carafoli, and E.E. Strehler, J. Biol. Chem. (in press).Google Scholar
  12. 12.
    C.D. Rasmussen and A.R. Means, EMBO J. 6:3961 (1987).PubMedGoogle Scholar
  13. 13.
    J.G. Chafouleas, W.E. Bolton, H. Hidaka, A.E. Boyd, and A.R. Means, Cell 28:41 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    Y. Sasaki and H. Hidaka, Biochem. Biophys. Res. Commun. 104:451 (1982).PubMedCrossRefGoogle Scholar
  15. 15.
    Y. Eilam and D. Chernichovsky, J. Gen. Microbiol. 134:1063 (1988).PubMedGoogle Scholar
  16. 16.
    Y. Ohya and Y. Anraku, Nature (in press).Google Scholar
  17. 17.
    Y.S. Babu, J.S. Sack, T.J. Greenhough, C.E. Bugg, A.R. Means, and W.J. Cook, Nature 315:37 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    O. Minowa and K. Yagi, J. Biochem. 96:1175 (1984).PubMedGoogle Scholar
  19. 19.
    D.L. Newton, M.D. Oldewurted, M.H. Krinks, J. Shiloach, and C. B. Klee, J. Biol. Chem. 259:4419 (1984).PubMedGoogle Scholar
  20. 20.
    O. Minowa, M. Yazawa, K. Sobue, K. Ito, and K. Yagi, J. Biochem. 103:531 (1988).PubMedGoogle Scholar
  21. 21.
    J.R. Dedman, J.D. Potter, R.L. Jackson, J.D. Johnson, and A.R. Means, J. Biol. Chem. 252:8415 (1977).PubMedGoogle Scholar
  22. 21a.
    E.W. Small, and S.R. Anderson, Biochemistry 27:419 (1988).PubMedCrossRefGoogle Scholar
  23. 22.
    R.E. Klevit, D.K. Blumenthal, D.E. Wemmer, and E.G. Krebs, Biochemistry 24:8152 (1985).PubMedCrossRefGoogle Scholar
  24. 23.
    S.H. Seeholzer, M. Cohn, J.A. Putkey, A.R. Means, and H.L. Crespi, Proc. Natl. Acad. Sci. USA 83:3634 (1986).PubMedCrossRefGoogle Scholar
  25. 24.
    A.E. Jackson, K.L. Carraway, D. Puett, and K. Brew, J. Biol. Chem. 261:12226 (1986).PubMedGoogle Scholar
  26. 25.
    A.E. Jackson, K.L. Carraway III, M.E. Payne, A.R. Means, D. Puett, and K. Brew, Proteins 2:202 (1987).PubMedCrossRefGoogle Scholar
  27. 26.
    M.A. Winkler, V.A. Fried, D.L. Merat, and W.Y. Cheung, J. Biol. Chem. 262:15466 (1987).PubMedGoogle Scholar
  28. 27.
    K.T. O’Neil and W.F. Delgrado, Proc. Natl. Acad. Sci. USA 82:4954 (1985).PubMedCrossRefGoogle Scholar
  29. 28.
    D.B. Heidorn and J. Trewhella, Biochemistry 27:909 (1988).PubMedCrossRefGoogle Scholar
  30. 29.
    Y.S. Babu, C.E. Bugg, and W.J. Cook, (1988) J. Mol. Biol. (in press).Google Scholar
  31. 30.
    R.H. Kretsinger and C.E. Nockolds, J. Biol. Chem. 248:3313 (1973).PubMedGoogle Scholar
  32. 31.
    D.M.E. Szebenyi, S.K. Obendorf, and K. Moffat, Nature 294:327 (1981).PubMedCrossRefGoogle Scholar
  33. 32.
    O. Herzberg and M.N.G. James, Nature 313:653 (1985).PubMedCrossRefGoogle Scholar
  34. 33.
    K.A. Satyshur, S.T. Rao, D. Pyzalska, W. Drendel, M. Greaser, and M. Sundaralingam, J. Biol. Chem. 263:1628 (1988).PubMedGoogle Scholar
  35. 34.
    J.A. Cox, Biochem. J. 249:621 (1988).PubMedGoogle Scholar
  36. 35.
    D. Guerini, J. Krebs and E. Carafoli, Eur. J. Biochem. 170:35 (1987).PubMedCrossRefGoogle Scholar
  37. 36.
    A.S. Manalan and C.B. Klee, Biochemistry 26:1382 (1987).PubMedCrossRefGoogle Scholar
  38. 37.
    D. Mann and T.C. Vanaman, Meth. Enzymol. 139:417 (1987).PubMedCrossRefGoogle Scholar
  39. 38.
    E.W. Small and S.R. Anderson, Biochemistry 27:419 (1988).PubMedCrossRefGoogle Scholar
  40. 39.
    J.A. Putkey, G.R. Slaughter, and A.R. Means, J. Biol. Chem. 260:4704 (1985).PubMedGoogle Scholar
  41. 40.
    J.A. Putkey, G.F. Draetta, G.R. Slaughter, C.B. Klee, P. Cohen, J.T. Stull, and A.R. Means, J. Biol. Chem. 261:9896 (1986).PubMedGoogle Scholar
  42. 41.
    J.A. Putkey, T. Ono, M.F.A. VanBerkum, and A.R. Means, J. Biol. Chem. (in press).Google Scholar
  43. 42.
    T.A. Craig, D.M. Watterson, F.G. Prendergast, J. Haiech, and D.M. Roberts, J. Biol. Chem. 262:3278 (1987).PubMedGoogle Scholar
  44. 43.
    A. Persechi, D.O. Hardy, D.K. Blumenthal, H.W. Jarrett, and R.H. Kretsinger, Biophys. J. 53:A252 (1988).Google Scholar
  45. 44.
    J.D. Johnson, J.H. Collins, and J.D. Potter, J. Biol. Chem. 253:6451 (1978).PubMedGoogle Scholar
  46. 45.
    J.A. Putkey, S.L. Carroll, and A.R. Means, Mol. Cell. Biol. 7:1549 (1987).PubMedGoogle Scholar
  47. 46.
    K. Takio, D.K. Blumenthal, A.M. Edelman, K.A. Walsh, E.G. Krebs, and K. Titani, Biochemistry 24:6028 (1985).PubMedCrossRefGoogle Scholar
  48. 47.
    V. Guerriero, M.A. Russo, N.J. Olson, J.A. Putkey, and A.R. Means, Biochemistry 30:8372 (1986).CrossRefGoogle Scholar
  49. 48.
    M.K. Bennett and M.B. Kennedy, Proc. Natl. Acad. Sci. USA 84:1794 (1987).PubMedCrossRefGoogle Scholar
  50. 49.
    C.R. Lin, M.S. Kapiloff, S. Durgerian, K. Tatemoto, A.F. Russo, P. Hanson, H. Schulman, and M.G. Rosenfeld, Proc. Natl. Acad. Sci. USA 84:5962 (1987).PubMedCrossRefGoogle Scholar
  51. 50.
    R.M. Hanley, A.R. Means, T. Ono, B.E. Kemp, K.E. Burgin, N. Waxham, and P.T. Kelly, Science 237:293 (1987).PubMedCrossRefGoogle Scholar
  52. 51.
    P. James, M. Maeda, R. Fischer, A.K. Verma, J. Krebs, J.T. Penniston and E. Carafoli, J. Biol. Chem. 263:2905 (1988).PubMedGoogle Scholar
  53. 52.
    E.M. Reimann, K. Titani, L.H. Ericsson, R.D. Wade, E.H. Fischer, and K.A. Walsh, (1984) Biochemistry 23:4185 (1984).PubMedCrossRefGoogle Scholar
  54. 53.
    P. Glaser, D. Ladant, O. Sezer, F. Pichot, A. Ullmann, and A. Danchin, Mol. Microbiol. 2:19 (1988).PubMedCrossRefGoogle Scholar
  55. 54.
    T.J. Lukas, W.H. Burgess, F.G. Prendergast, W. Lau, and D.M. Watterson, 25:1458 (1986).Google Scholar
  56. 55.
    D.K. Blumenthal, K. Takio, A.M. Edelman, H. Charbonneau, K. Titani, K.A. Walsh, and E.G. Krebs, Proc. Natl. Acad. Sci. USA 82:3187 (1985).PubMedCrossRefGoogle Scholar
  57. 56.
    B.E. Kemp, R.B. Pearson, V. Guerriero, I.C. Bagchi, and A.R. Means, J. Biol. Chem. 262:2542 (1987).PubMedGoogle Scholar
  58. 57.
    M. Ikebe, S. Malgorzata, B.E. Kemp, A.R. Means, and D.J. Hartshorne, J. Biol. Chem. 260:12828 (1987).Google Scholar
  59. 58.
    P.J. Kennelly, A.M. Edelman, D.K. Blumenthal, and E.G. Krebs, J. Biol. Chem. 262:11958 (1987).PubMedGoogle Scholar
  60. 59.
    M.E. Payne, Y.-L. Fong, T. Ono, R.J. Colbran, B.E. Kemp, T.R. Soderling, and A.R. Means, J. Biol. Chem. 263:7190 (1988).PubMedGoogle Scholar
  61. 60.
    R.M. Hanley, A.R. Means, B.E. Kemp, and S. Shenolikar, Biochem. Biophys. Res. Commun. 152:122 (1988).PubMedCrossRefGoogle Scholar
  62. 61.
    E.A. Tallant, L.M. Brumley and R.W. Wallace, 27:2205 (1988).Google Scholar
  63. 62.
    R.B. Pearson, R.E.H. Wettenhall, A.R. Means, D.J. Hartshorne, and B.E. Kemp, Science 241:970 (1988).PubMedCrossRefGoogle Scholar
  64. 63.
    J.R. Sellers and E.V. Harvey, Biochemistry 23:5821 (1984).PubMedCrossRefGoogle Scholar
  65. 64.
    L.M. Griffith, S.M. Downs and J.A. Spudich, J. Cell. Biol. 104:1309 (1987).PubMedCrossRefGoogle Scholar
  66. 65.
    K.E. Kamm and J.T. Stull, Ann. Rev. Pharmacol. Toxicol. 25:593 (1985).CrossRefGoogle Scholar
  67. 66.
    N.M. Kaplan, Systemic Hypertension: Therapy in: “Heart Disease: A Textbook of Cardiovascular Medicine,” E. Braunwald, W.B. Saunders & Co., pp. 819–861 (1988).Google Scholar
  68. 67.
    P.H. Stone, Z. Turi, J.E. Muller, E. Geltman, A. Jaffe, E. Braunwald, J. Am. Coll. Cardiol. 1:596 (1983).Google Scholar
  69. 68.
    V.B. Subramanian, N.S. Khurmi, M.J. Bowles, M. O’Hara and E.B. Raferty, J. Am. Coll. Cardiol. 1:1144 (1983).CrossRefGoogle Scholar
  70. 69.
    R.S. Gibson, W.E. Boden, P. Theroux, et al. N. Engl. J. Med. 315:423 (1986).PubMedCrossRefGoogle Scholar
  71. 70.
    C.Y.C. Chew, B.G. Brown, B.W. Single, M.M. Wong, C. Pierce, R. Peterson, Am. J. Cardiol. 51:699 (1983).PubMedCrossRefGoogle Scholar
  72. 71.
    E. Braunwald, N. Engl. J. Med. 307:1618 (1983).Google Scholar
  73. 72.
    L.H. Opie, Cardiovascular Drug and Therapy 1:411 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Anthony R. Means
    • 1
  • Mark F. A. VanBerkum
    • 1
  • Samuel E. George
    • 1
  • Indrani C. Bagchi
    • 1
  1. 1.Department of Cell BiologyBaylor College of MedicineHoustonUSA

Personalised recommendations