Immunological and Metabolic Reconstitution Following Successful Bone Marrow Transplantation from a HLA-Identical Sibling in an Infant with Adenosine Deaminase Deficeincy and Severe Combined Immunodeficiency: Partial Restoration of Purine Metabolism

  • Yukio Hyodo
  • Roichi Itoh
  • Hiroko Kurozumi
  • Masaaki Ibe
  • Jun Oka
  • Koichi Yamada
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 253A)

Abstract

Chen et al. have reported that bone marrow transplantation in a patient with adenosine deaminase (ADA) deficiency and severe combined immunodeficiency is followed by clearing of one abnormal metabolite, deoxy(d)ATP, from the patient’s own still ADA-deficient erythrocytes (1). This finding suggests that engraftment of donor lymphocytes into an ADA-deficient patient provided “enzyme replacement therapy”, and completely corrected the accumulation of adenine deoxyribonucleotides in one of nonlymphoid tissues.

Keywords

Toxicity HPLC Creatinine Adenosine Flare 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, S-H., Ochs, H.D., Scott, C.R., Giblett, E.R. and Tingle, A.J. Adenosine deaminase deficiency: disappearance of adenine deoxynucleotides from a patient’s erythrocytes after successful marrow transpalntation. J. Clin. Invest. 62, 1386–1389 (1978)PubMedCrossRefGoogle Scholar
  2. 2.
    Hirschhorn, R., Roegner-Maniscalco, V., Kuritsky, L. and Rosen, F.S. Bone marrow transplantation only partially restores purine metabolism to normal in adenosine deaminase-deficient patients. J. Clin. Invest. 68, 1387–1393 (1981)PubMedCrossRefGoogle Scholar
  3. 3.
    Rylance, H.J., Wallace, R.C. and Nuki, G. Inborn error of purine metabolism in man: development of purine enzyme assay using high performance liquid chromatography. Ann. Rheum. Dis. 42 (Supple.), 86 (1983)CrossRefGoogle Scholar
  4. 4.
    Hershfield, M.S., Fetter, J.E. Small, W.C., Bagnara, A.S., Williams, S.R., Ullman, B., Martin, Jr., D.W., Wasson D.B. and Carson, D.A. Effects of mutational loss of adenosine kinase and deoxycytidine kinase on deoxyATP accumulation and deoxyadenosine toxicity in cultured CEM Human T-lymphoblastoid cells. J. Biol. Chem. 257, 6380–6386 (1982)PubMedGoogle Scholar
  5. 5.
    Rylance, H.J., Wallace, R.C. and Nuki, G. Hypoxanthine-guanine phosphoribosyl transferase: assay using high performance liquid chromatography. Clin. Chim. Acta, 121, 159–165 (1982)PubMedCrossRefGoogle Scholar
  6. 6.
    Morgan, G., Levinsky, R.J., Hugh-Jones, K., Fairbanks, L.D. Morris, G.S. Simmonds, A. Heterogeneity of biochemical, clinical and immunological parameters in severe combined immunodeficiency due to adenosine deaminase deficiency. Clin. Exp. Immunol. 70, 491–499 (1987)PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Yukio Hyodo
    • 1
  • Roichi Itoh
    • 2
  • Hiroko Kurozumi
    • 1
  • Masaaki Ibe
    • 1
  • Jun Oka
    • 2
  • Koichi Yamada
    • 2
  1. 1.Division of Infection and Immunology MutsukawaKanagawa Children’s Medical CenterMinami-ku, YokohamaJapan
  2. 2.The National Institute of NutritionToyama, Shinjuku-kuJapan

Personalised recommendations