Autosomal Dominant Hemolytic Anemia and Adenosine Deaminase Overproduction

  • E. G. Chottiner
  • D. Ginsburg
  • B. S. Mitchell
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 253A)


Paglia et al have described a kindred with an autosomal dominant hemolytic anemia characterized by a 70- to 100-fold elevation in erythrocyte adenosine deaminase (ADA) activity and decreased ATP pools (1, 2). The disorder appears to be limited to red blood cells (RBC), as B lymphoblast, granulocyte, and skin fibroblast ADA activities fall within the normal range. Kinetic and physicochemical properties of ADA partially purified from proband RBC are normal, suggesting that the enzyme contains no structural abnormalities (3).


Adenosine Deaminase Adenosine Deaminase Activity Lymphoblast Cell Line Adenine Nucleotide Metabolism Human Adenosine Deaminase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paglia, D.E., W.N. Valentine, A.P. Tartaglia, and F. Gilsanz. 1976. Perturbations in erythrocyte adenine nucleotide metabolism: a dominantly inherited hemolytic disorder with implications regarding normal mechanisms of adenine nucleotide preservation. Blood. 48: 959. (Abstr.)Google Scholar
  2. 2.
    Valentine, W.N., D.E. Paglia, A.P. Tartaglia, and F. Gilsanz. 1977. Hereditary hemolytic anemia with increased red cell adenosine deaminase (45-to 70-fold) and decreased adenosine triphosphate. Science (Wash. DC). 195: 783–785.CrossRefGoogle Scholar
  3. 3.
    Paglia, D.E., W.N. Valentine, A.P. Tartaglia, F. Gilsanz, and R.S. Sparkes. 1978. Control of red blood cell adenine nucleotide metabolism: studies of ADA. In The Red Cell. G. Brewer, editor. Alan R. Liss, Inc., New York. 319–335.Google Scholar
  4. 4.
    Chottiner, E.G., H.J. Cloft, A.P. Tartaglia, and B.S. Mitchell. 1987. Elevated adenosine deaminase activity and hereditary hemolytic anemia: evidence for abnormal, translational control of protein synthesis. J. Clin. Invest. 79: 1001–1006.PubMedCrossRefGoogle Scholar
  5. 5.
    Maniatis, T., E.F. Fritsch, and J. Sambrook. 1982. Molecular Cloning. Cold Spring Harbor, New York.Google Scholar
  6. 6.
    Melton, D.A., P.A. Krieg, M.R. Rebagliati, T. Maniatis, K. Zinn, and M.R. Green. 1984. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage Sp6 promoter. Nucleic Acids Res. 12: 7035–7056.PubMedCrossRefGoogle Scholar
  7. 7.
    Okayama, H. and P. Berg. 1982. High-efficiency cloning of full-length cDNA. Mol. Cell. Biol. 2: 161–170.PubMedGoogle Scholar
  8. 8.
    Gubler, U. and B.J. Hoffman. 1983. A simple and very efficient method for generating cDNA libraries. Gene. 26: 263–269.CrossRefGoogle Scholar
  9. 9.
    Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74: 5463–5467.PubMedCrossRefGoogle Scholar
  10. 10.
    Wiginton, D.A., D.J. Kaplan, J.C. States, A.L. Akeson, C.M. Perme, I.J. Bilyk, A.J. Vaughn, D.L. Lattier, and J.J. Hutton. 1986. Complete sequence and structure of the gene for human adenosine deaminase. Biochemistry. 25: 8234–8244.PubMedCrossRefGoogle Scholar
  11. 11.
    Fujii, H.S., S. Miwa, K. Tani, N. Fujinami, and H. Asano. 1982. Overproduction of structurally normal enzyme in man: hereditary haemolytic anaemia with increased red cell adenosine deaminase activity. Br. J. Haematol. 51: 427–430.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • E. G. Chottiner
    • 1
  • D. Ginsburg
    • 2
  • B. S. Mitchell
    • 1
  1. 1.Department of Internal MedicineUniversity of MichiganAnn ArborUSA
  2. 2.Howard Hughes Medical InstituteUniversity of MichiganAnn ArborUSA

Personalised recommendations