Advertisement

Molecular Aspect of Myogenic Hyperuricemia: Cloning of Human Muscle Phosphofructokinase cDNA

  • Hiromu Nakajima
  • Tamio Noguchi
  • Ikuo Mineo
  • Tomoyuki Yamasaki
  • Norio Kono
  • Takehiko Tanaka
  • Seiichiro Tarui
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 253A)

Abstract

In the last decade, molecular biology has made a breakthrough in our understanding of gene regulations, protein structures and mutant gene constitutions. Inborn errors of metabolism would be representatives of the fields of interest in which molecular biological techniques are expected to be the most powerful tools for analysis.

Keywords

Human Muscle Enzyme Defect Molecular Biological Technique Muscle Glycolysis Complete Primary Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Martiniuk, M. Mehler, A. Pellicer, S. Tzall, G. La Badie, C. Hobart, A. Ellenbogen, and R. Hirschhorn, Isolation of a cDNA for human acid α-glucosidase and detection of genetic heterogeneity for mRNA in three α-glucosidase-deficient patients, Proc. Natl. Acad. Sci. USA 83: 9641 (1986).PubMedCrossRefGoogle Scholar
  2. 2.
    S. Gautron, D. Daegelen, F. Mennecier, D. Dubocq, A. Kahn, and J.-C. Dreyfus, Molecular mechanisms of McArdle’s disease (muscle glycogen phosphorylase deficiency): RNA and DNA analysis, J. Clin. Invest. 79: 275 (1987).PubMedCrossRefGoogle Scholar
  3. 3.
    S. Tarui, G. Okuno, Y. Ikura, T. Tanaka, M. Suda, and M. Nishikawa, Phosphofructokinase deficiency in skeletal muscle: a new type of glycogenosis, Biochem. Biophys. Res. Commun. 19: 517 (1965).PubMedCrossRefGoogle Scholar
  4. 4.
    I. Mineo, N. Kono, N. Hara, T. Shimizu, Y. Yamada, M. Kawachi, H. Kiyokawa, Y.L. Wang, and S. Tarui, Myogenic hyperuricemia: a common pathophysiologic feature of glycogenosis types III, V, and VII, N. Engl. J. Med. 317: 75 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    S. Vora, F. Hong, and E. Olender, Isolation of a cDNA for human muscle 6-phosphofructokinase, Biochem. Biophys. Res. Commun. 135: 615 (1986).Google Scholar
  6. 6.
    H. Okayama and P. Berg, A cDNA cloning vector that permits expression of cDNA inserts in mammalian cells, Mol. Cell Biol. 3: 280 (1983).PubMedGoogle Scholar
  7. 7.
    T. Maniatis, E.F. Fritsch, and J. Sambrook, Molecular cloning — a laboratory manual, Cold Spring Harbor Laboratory, N.Y. (1982).Google Scholar
  8. 8.
    D.M. Glover, ed., DNA cloning — a practical approach Vol. 1., IRL, Oxford (1985).Google Scholar
  9. 9.
    B.D. Hames and S.J. Higgins, eds., Nucleic acids hybridisation — a practical approach, IRL, Oxford (1985).Google Scholar
  10. 10.
    N.S. Karadsheh and K. Uyeda, Studies on structure of human erythrocyte phosphofructokinase, J. Biol. Chem. 252: 3515 (1977).PubMedGoogle Scholar
  11. 11.
    R.A. Poorman, A. Randolph, R.G. Kemp, and R.L. Heinrikson, Evolution of phosphofructokinase — gene duplication and creation of new effector sites, Nature 309: 467 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    C.-P. Lee, M.-C. Kao, B.A. French, S.D. Putney, and S.H. Chang, The rabbit muscle phosphofructokinase gene: implications for protein structure, function and tissue specificity, J. Biol. Chem. 262: 4195 (1987).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Hiromu Nakajima
    • 1
  • Tamio Noguchi
    • 2
  • Ikuo Mineo
    • 1
  • Tomoyuki Yamasaki
    • 1
  • Norio Kono
    • 1
  • Takehiko Tanaka
    • 2
  • Seiichiro Tarui
    • 1
  1. 1.the Second Department of Internal MedicineOsaka University Medical SchoolOsakaJapan
  2. 2.The Department of Nutrition and Physiological ChemistryOsaka University Medical SchoolOsakaJapan

Personalised recommendations