Advertisement

Persistent Production of Hypoxanthine in Rat Skeletal Muscle Causes Prolonged Hyperuricemia after an Enhaustice Exercise

  • Masashi Ogasawara
  • Tetsuya Seino
  • Shinji Hadano
  • Akira Ito
  • Hiroshi Goto
  • Mitsuo Itakura
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 253A)

Abstract

In our previous study on exercise-induced hyperuricemia in hunans, we reported that serum uric acid reaches a maximal level 1–2 h after an exhaustive exercise and then decreases subsequently, remaining a significant higher level even at 24 h (Ito et al., 1984). In men taking allopurinol beforehand, a similar impression give our recent results on plasma oxypurine levels, which showed maximal values after 1 h of the exercise and then decreased, keeping a significant higher levels than controls without the exercise at 7 h (Hadano et al., 1987).

Keywords

Uric Acid Serum Uric Acid Exercise Group Exhaustive Exercise Significant High Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariano, M. A., Armstrong, R. B., and Edgerton, V. R., 1973, Hindlimb muscle fiber populations of five mammals, J. Histchem. Cytochem., 21: 55.CrossRefGoogle Scholar
  2. Burger, R. M., and Lowenstein, J. M., 1970, Preparation and properties of 5′-nucleotidase from smooth muscle of small intestine, J. Biol. Chem., 245: 6274.PubMedGoogle Scholar
  3. Coffee, C. J., and Solano, C., 1977, Rat muscle 5′-adenylic acid aminohydrolase. Role of K+ and adenylate energy charge in experssion of kinetic and regulatory properties, J. Biol. Chem., 252: 1606.PubMedGoogle Scholar
  4. Driedzic, W. R., and Hochachka, P. W., 1976, Control of energy metabolism in fish white muscle, Am. J. Physiol., 230: 579.PubMedGoogle Scholar
  5. Dudley, G. A., and Terjung, R. L., 1985, Influence of acidosis on AMP deaminase activity on contracting fast-twitch muscle, Am. J. Physiol., 248: C 43.Google Scholar
  6. Edwards, M. J., and Maguire, M. H., 1970, Purification and properties of rat heart 5′-nucleotidase, Mol. Pharmacol., 6: 641.PubMedGoogle Scholar
  7. Fox, I. H., and Marchant, P. J., 1976, Purine catabolism in man: inhibition of 5′-phosphcmonoesterase activities from placental microsomes, Can. J. Biochem., 54: 1055.PubMedCrossRefGoogle Scholar
  8. Hadano, S., Ogasawara, M., and Ito, A., 1987, Mechanism of exercise-induced hyperuricemia, J. Physiol. Soc. Jap., 49: 151.PubMedGoogle Scholar
  9. Hara, N., Mineo, I., Yamada, Y., Kawachi, M., Kiyokawa, H., Wang, Y. L., Kono, N., and Tarui, S., 1987, Purine degradation in contracting fast and slow muscle, Uric Acid Res., 11: 1.Google Scholar
  10. Hermansen, L., and Osnes, J. B., 1972, Blood and muscle pH after maximal exercise in man, J. Appl. Physiol., 32: 304.PubMedGoogle Scholar
  11. Ito, A., Mikami, T., Goto, H., and Ikawa, S., 1984, Effect of different kinds of exercise on serum uric acid, Uric Acid Res., 8: 38.Google Scholar
  12. Kono, N., Mineo, I., Shimizu, T., Hara, N., Yamada, Y., Nonaka, K., and Tarui, S., 1986, Increased plasma uric acid after exercise in muscle phosphofructokinase deficiency, Neurology, 36: 106.PubMedCrossRefGoogle Scholar
  13. Krenitsky, T. A., 1969, Tissue distribution of purine ribosyl-and phosphoribosyltransferases in the Rhesus monkey, Biochim. Biophys. Acta., 179: 506.PubMedGoogle Scholar
  14. Meyer, R. A., and Terjung, R. L., 1979, Differences in ammonia and adenylate metabolism in contracting fast and slow muscle, Am. J. Physiol., 237: C 111.Google Scholar
  15. Meyer, R. A., and Terjung, R. L., 1980, AMP deamination and IMP reamination in working skeletal muscle, Am. J. Physiol., 239: C 32.Google Scholar
  16. Meyer, R. A., Dudley, G. A., and Terjung, R. L., 1980, Ammonia and IMP in different skeletal muscle fibers after exercise in rats, J. Appl. Physiol., 49: 1037.PubMedGoogle Scholar
  17. Nichols, J., Miller, A. T., and Hiatt, E. P., 1951, Influence of muscular exercise on uric acid excretion in man, J. Appl. Physiol., 3: 501.PubMedGoogle Scholar
  18. Ogasawara, M., Hadano, S., Kasugai, A., Ito, A., and Ikawa, S., 1988, Effect of the difference of exercise intensity on the changes in ammonia and oxypurines, Jpn. J. Phys. Fitness Sports Med., 37: 85.Google Scholar
  19. Salati, L. M., Gross, C. J., Henderson, L. M., and Savaiano, D. A., 1984, Absorption and metabolism of adenine, adenosine-5′-monophosphate, adenosine and hypoxanthine by the isolated vascularly perfused rat small intestine, J. Nutr., 114: 753.PubMedGoogle Scholar
  20. Schultz, V., and Iowenstein, J. M., 1976, The purine nucleotide cycle. Studies of ammonia production and interconversions of adenine and hypoxanthine nucleotides and nucleoside by rat brain in situ, J. Biol. Chem., 253: 1938.Google Scholar
  21. Shalin, K., Alvestrand, A., Brandt, R., and Hultman, E., 1978, Intracellular pH and bicarbonate concentration in human muscle during recovery from exercise, J. Appl. Physiol., 45: 474.Google Scholar
  22. Solano, C., and Goffee, C. J., 1979, Comparison of AMP deaminase from skeletal muscle of acidotic and normal rats, Biochim. Biophys. Acta., 582: 369.PubMedCrossRefGoogle Scholar
  23. Sutton, J. R., Toews, C. J., Ward, G. R., and Fox, I. H., 1980, Purine metabolism during strenuous muscluar exercise in man, Metabolism, 29: 254.PubMedCrossRefGoogle Scholar
  24. Wheeler, T. J., and Lowenstein, J. M., 1979, Menylate deaminase from rat muscle. Regulation by purine nucleotides and orthophosphate in the presence of 150 mM KCl, J. Biol. Chem., 254: 8994.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Masashi Ogasawara
    • 1
  • Tetsuya Seino
    • 2
  • Shinji Hadano
    • 3
  • Akira Ito
    • 2
  • Hiroshi Goto
    • 2
  • Mitsuo Itakura
    • 3
  1. 1.Department of Physical EducationUniversity of FukuokaFukuokaJapan
  2. 2.Institute of Health and Sports ScienceIbaraki, 305Japan
  3. 3.Institute of Clinical MedicineUniversity of TsukubaIbaraki, 305Japan

Personalised recommendations