Advertisement

AMP Catabolism in Primary Rat Cardiomyocyte Cultures

  • Esther Zoref-Shani
  • Genia Kessler-Icekson
  • Oded Sperling
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 253A)

Abstract

The mechanisms operating to maintain an optimal adenine nucleotide pool in tissues are interrelated with the metabolism of AMP, This compound is the parent adenine nucleotide molecule to be produced, either de novo or by salvage. At the same time AMP is also the substrate for adenine nucleotide degradation to diffusible nucleosides and bases, which can efflux from the tissue (1, 2, 3, 4).

Keywords

Adenine Nucleotide Adenosine Deaminase Purine Nucleoside Purine Nucleoside Phosphorylase Adenylate Energy Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achterberg, P.W., Harmsen, E., De Jong, J.W. Adenosine deaminase inhibition and myocardial purine release during normoxia and ischemia. Cardiovasc. Res. 19, 593–598 (1985).PubMedCrossRefGoogle Scholar
  2. 2.
    Achterberg, P.W., Stroeve, R.J., De Jong, J.W. Myocardial adenosine cycling rates during norraoxia and under conditions of stimulated purine release. Biochem. J. 235, 13–17 (1986).PubMedGoogle Scholar
  3. 3.
    Harmsen, E, De Tombe, P.P., De Jong, J.W. Achterberg, P.W. Enhanced ATP and GTP synthesis from hypoxanthine or inosine after myocardial ischemia. Am. J. Physiol. 246, H37–H43 (1984).PubMedGoogle Scholar
  4. 4.
    Schutz, W., Schrader, J., Gerlach, E. Different sites of adenosine formation in the heart. Am J. Physiol. 240, H963–H970 (1981).PubMedGoogle Scholar
  5. 5.
    Zoref-Shani, E., Kessler-Icekson, G., Sperling, O. Pathways of adenine nucleotide catabolism in primary rat cardiomyocyte cultures. J. Mol. Cell. Cardiology, 20, 23–30, 1988.CrossRefGoogle Scholar
  6. 6.
    Kessler-Icekson, G., Sperling, O., Rotera, C., Wasserman, L. Cardiomyocytes cultured in serum free medium. Growth and creatine kinase activity. Exp. Cell Res. 155, 113–120 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    Zoref, E., Sperling, O., De Vries, A. Abnormal property of human mutant hypoxanthine-guanine phosphoribosyltransferase: Insensitivity of fibroblast enzyme to stabilization against freezing and thawing by 5-phosphoribosyl-1-pyrophosphate. Europ. J. Clin. Invest. 4, 43–46 (1974).PubMedCrossRefGoogle Scholar
  8. 8.
    Zoref-Shani, E., Kessler-Icekson, G., Wasserman, L., Sperling, O. Characterization of purine nucleotide metabolism in primary rat cardiomyocyte cultures. Biochim. Biophys. Acta. 804, 161–168 (1984).PubMedCrossRefGoogle Scholar
  9. 9.
    Itoh, R., Oka, J., Ozasa, H. Regulation of rat heart cytosol 5′-nucleotidase by adenylate energy charge. Biochera. J. 235, 847–851 (1986).Google Scholar
  10. 10.
    Berne, R.M., Rubio, R. Adenine nucleotide metabolism in the heart. Circ. Res. 34 and 35(Suppl. III) 109–118 (1974).Google Scholar
  11. 11.
    Meghji, P., Holmquist, C.A. Adenosine formation and release from neonatal-rat heart cells in culture. Biochem. J. 229, 799–805 (1985).PubMedGoogle Scholar
  12. 12.
    Newby, A., Holmquist, C.A., Illingworth, J., Pearson, J.D. The control of adenosine concentration in polymorphonuclear leucocytes, cultured heart cells and isolated perfused heart from rat. Biochem. J. 214, 317–323 (1983).PubMedGoogle Scholar
  13. 13.
    Newby A.C. Adenosine and the concept of ‘retaliatory metabolites’. Trends Biochem. Sci. 9, 42–44 (1984).CrossRefGoogle Scholar
  14. 14.
    Geisbuhler, T., Altschuld, R.A., Trewyn, R.W., Ansel, A.Z., Lamka, K., Brierley, G.P. Adenine nucleotide metabolism and compartmentalization in isolated adult rat heart cells. Circ. Res. 54, 536–546 (1984).PubMedCrossRefGoogle Scholar
  15. 15.
    Sabina, B.L., Swain, J.L., Olanow, C.W., Bradley, W.G., Fishbein, W.N., Dimanro, S., Holmes, E.W. Myodenylate deaminase deficiency. Functional and metabolic abnormalities associated with disruption of the purine nucleotide cycle. J. Clin. Invest. 73, 720–730 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    Fox, I.H., Kelley, W.N. The role of adenosine and 2′-deoxyadenosine in mammalian cells. Ann. Rev. Biochem. 47, 655–686 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    Bowditch, J., Brown, A.K., Dow, J.W. Accumulation and salvage of adenosine and inosine by isolated mature cardiac myocytes. Biochim. Biophys. Acta 844, 119–128 (1985).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Esther Zoref-Shani
    • 1
    • 2
  • Genia Kessler-Icekson
    • 1
    • 2
  • Oded Sperling
    • 1
    • 2
  1. 1.Department of Chemical PathologyTel-Aviv University Sackler School of MedicineTel-AvivIsrael
  2. 2.Rogoff-Wellcome Medical Research Institute and Department of Clinical BiochemistryBeilinson Medical CenterPetah-TikvaIsrael

Personalised recommendations