Erythrocyte ATP (iATP) as an Indicator of Neonatal Hypoxia

  • Felícitas A. Mateos
  • Juan G. Puig
  • Teresa H. Ramos
  • Ramón H. Carranza
  • María E. Miranda
  • Rafael C. Gasalla
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 253A)


Neonatal hypoxia is a major cause of morbidity and mortality in new-borns (NB). Fetal asphyxia has traditionally been diagnosed and graded using clinical signs (meconium-staining, fetal bradycardia, Apgar score [1]) and biochemical parameters (pH, lactate [2]). However, the sensitivity and specificity of these indices are not optimal and more accurate methods for assessing hypoxia are needed.


Umbilical Cord Blood Fetal Distress Perinatal Asphyxia Neonatal Hypoxia Fetal Asphyxia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.P. Addy. Birth asphyxia. Br Med J 285: 1288–1289 (1982).CrossRefGoogle Scholar
  2. 2.
    P.J. Cohen. The metabolic function of oxygen and biochemical lesions of hypoxia. Anesthesiology 37: 148–177 (1972).PubMedCrossRefGoogle Scholar
  3. 3.
    O.D. Saugstad. Hypoxanthine as a measurement of hypoxia. Pediatr Res 9: 158–161 (1975).PubMedCrossRefGoogle Scholar
  4. 4.
    O.D. Saugstad. Hypoxanthine as an indicator of hypoxia: Its role in health and disease through free radical production. Pediatr Res 23: 143–150 (1988).PubMedCrossRefGoogle Scholar
  5. 5.
    O.D. Saugstad, M. Ziegler, B. Kessel, B. Saunders, and L. Gluck. Correlation of plasma hypoxanthiine and chatecolamine levels in the umbilical vein. J Perinat Med 14: 339–343 (1986).PubMedGoogle Scholar
  6. 6.
    O.D. Saugstad, and L. Gluck. Plasma hypoxanthine levels in newborn infants: A specific indicator of hypoxia. J Perinat Med 10: 266–272 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    F.A. Mateos, J.G. Puig, M.L. Jiménez, and I.H. Fox. Hereditary xanthinuria: Evidence for enhanced hypoxanthine salvage. J Clin Invest 79: 847–852 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    G.S. Sykes, P. Jhonson, F. Ashworth, et al. Do Apgar score indicate asphyxia? Lancet 1: 494–496 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    R.A. Harkness, R.J. Simmonds, S.B. Coade, and C.R. Lawrence. Ratio of the concentration of hypoxanthine to creatinine in urine from newborn infants: A possible indicator for the metabolic damage due to hypoxia. Br J Obst Gynaecol 90: 447–452 (1983).CrossRefGoogle Scholar
  10. 10.
    R.A. Harkness, and R.J. Lund. Cerebrospinal fluid concentrations of hypoxanthine, xanthine, uridine and inosine: High concentrations of the ATP metabolite hypoxanthine after hypoxia. J Clin Pathol 36: 1–8 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    H. Manzke, K. Dorner, and J. Grunitz. Urinary hypoxanthine, xanthine and uric acid excretions in newborn infants with perinatal complications. Acta Pediatr Scand 66: 713–717 (1977).CrossRefGoogle Scholar
  12. 12.
    K. Thiringer. Cord plasma hypoxanthine as a measure of fetal hypoxia. Acta Pediatr Scand 72: 231–237 (1983).CrossRefGoogle Scholar
  13. 13.
    E.L. Bratteby, and S.A. Swanstrom. Hypoxanthine concentration in plasma during the first two hours after birth in normal and asphyxiated infants. Pediatr Res 16: 152–155 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    S.A. Swanstrom, and E.L. Hypoxanthine as a test of perinatal hypoxia as compared to lactate, base deficit and pH. Pediatr Res 16: 156–160 (1982).PubMedCrossRefGoogle Scholar
  15. 15.
    M.C. O’connors, R.A. Harkness, and R.J. Simmonds. The measurement of hypoxanthine, xanthine, inosine and uridine in umbilical cord blood and fetal scalp blood samples as a measure of fetal hypoxia. Br J Obst Gynaecol 88: 381–390 (1981).CrossRefGoogle Scholar
  16. 16.
    R.A. Harkness, R.J. Simmonds, and S.B. Coade. Purine transport and metabolism in man: The effect of exercise on concentration of purine bases, nucleosides and nucleotides in plasma, urine, leukocytes and erythrocytes. Clin Sci 64: 333–340 (1983).PubMedGoogle Scholar
  17. 17.
    J.R. Sutton, C.J. Towes, G.R. Ward, and I.H. Fox. The purine metabolism during strenous muscular exercise in man. Metabolism 29: 254–260 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    L.H. Ketai, R.H. Simon, J.W. Kreit, and C.M. Grum. Plasma hypoxanthine and exercise. Am Rev Resp Dis 136: 98–101 (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    I.H. Fox. Adenosine triphosphate degradation in specific disease. J Lab Clin Med 106: 101–110 (1985).PubMedGoogle Scholar
  20. 20.
    C.M. Grum, R.H. Simon, D.R. Dantzker, and I.H. Fox. Evidence for adenosine triphosphate degradation in critically-ill patients. Chest 88: 763–767 (1985).PubMedCrossRefGoogle Scholar
  21. 21.
    J.O. Wolliscroft, and I.H. Fox. Increased body fluid purine levels during hypotensive events. Evidence for ATP degradation. Am J Med 81: 472–478 (1986).CrossRefGoogle Scholar
  22. 22.
    W. Kamine, M. Burdelski, G. Steinhof, R. Burckhartd, W. Lauchart, and R. Pichlmar. Adenine nucleotide metabolism and its relation to organ viability in human liver transplantations. Transplantation 45: 138–143 (1987).Google Scholar
  23. 23.
    E. Beutler. “Red Cell Metabolism. A Manual of Biochemical Methods”. 2nd ed. Grune and Stratton, New York (1975).Google Scholar
  24. 24.
    F. Bontemps, G. Van den Berghe, H.G. Hers. Pathways of adenine nucleotide catabolism in erythrocytes. J Clin Invest 77: 824–830 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Felícitas A. Mateos
    • 1
  • Juan G. Puig
    • 1
  • Teresa H. Ramos
    • 1
  • Ramón H. Carranza
    • 1
  • María E. Miranda
    • 1
  • Rafael C. Gasalla
    • 1
  1. 1.Departments of Clinical Biochemistry and Internal Medicine “La Paz” HospitalUniversidad AutónomaMadridSpain

Personalised recommendations