Advertisement

Enhanced Adenine Nucleotide Degradation in Chronic Obstructive Pulmonary Disease: The Effect of Oxygen Therapy

  • Felícitas A. Mateos
  • Pablo F. Gómez
  • Juan G. Puig
  • Manuel L. Jiménez
  • Teresa H. Ramos
  • José G. Mantilla
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 253A)

Abstract

Cellular metabolism requires a continuous energy supply that is furnished largely by adenosine triphosphate (ATP). ATP is synthesized in the mitochondrial electron transport chain from adenosine diphosphate (ADP), inorganic phosphate, NADH and oxygen. Since 80–90% of total oxygen consumption in humans is destined to the synthesis of high-energy compounds, oxygen availability is essential for cellular ATP recharge.

Keywords

Chronic Obstructive Pulmonary Disease Uric Acid Chronic Obstructive Pulmonary Disease Patient Oxygen Therapy Adenine Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O.D. Saugstad. Hypoxanthine as a measurement of hypoxia. Pediatr Res 9: 158–161 (1975).PubMedCrossRefGoogle Scholar
  2. 2.
    A. Harkness, A.G.L. Whitelaw, and R.J. Simmonds. Intrapartum hypoxia: the association between neurological assessment of damage and abnormal excretion of ATP metabolites. J Clin Pathol 35: 999–1007 (1982).PubMedCrossRefGoogle Scholar
  3. 3.
    A.C. Fox, G.E. Reed, H. Meilman, and B.B. Silck. Relase of nucleosides from canine and human hearts as an index of prior ischemia. Am J Cardiol 43: 52–58 (1979).PubMedCrossRefGoogle Scholar
  4. 4.
    I.H. Fox. Metabolic basis for disorders of purine nucleotide degradation. Metabolism 30: 616–634 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    I.H. Fox. Adenosine triphosphate degradation in specific disease. J Lab Clin Med 106: 101–110 (1985).PubMedGoogle Scholar
  6. 6.
    N.L. Edwards, D. Recker, and I.H. Fox. Overproduction of uric acid in hypoxanthine-guanine phosphoribosyltransferase deficiency. Contribution by impaired purine salvage. J Clin Invest 63: 922–930 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    F.A. Mateos, J.G. Puig, M.L. Jimenez, and I.H. Fox. Hereditary xan-thinuria: Evidence for enhanced hypoxanthine salvage. J Clin Invest 79: 847–852 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    N. Kageyama. A direct colorimetric determination of uric acid in serum and urine with uricase-catalase system. Clin Chim Acta 31: 421–427 (1971).PubMedCrossRefGoogle Scholar
  9. 9.
    J.C. Bode, O. Zelder, and H.J. Rumpelt. Depletion of liver adenosine phosphates and metabolic effects of intravenous infusion of fructose or sorbitol in man and in the rat. Eur J Clin Invest 3: 436–441 (1973).PubMedCrossRefGoogle Scholar
  10. 10.
    J.R. Sutton, C.J. Toews, G.R. Ward, and I.H. Fox. Purine metabolism during strenous muscular exercise in man. Metabolism 29: 254–260 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    W. Kamine, M. Burdelski, G. Steinhof, R. Burckartd, W. Lauchart, and R. Pichlmar. Adenine nucleotide metabolism and its relation to organ viability in human liver transplantation. Transplantation 45: 138–143 (1987).Google Scholar
  12. 12.
    J.O. Wooliscroft, and I.H. Fox. Increased body fluid purine levels during hypotensive events. Am J Med 81: 472–478 (1986).CrossRefGoogle Scholar
  13. 13.
    C.M. Grum, R.H. Simon, D.R. Dantzker, and I.H. Fox. Evidence for ATP degradation in critically ill patients. Chest 88: 763–767 (1985).PubMedCrossRefGoogle Scholar
  14. 14.
    J.D. Hasday, and C.M. Grum. Nocturnal increase of urinary uric acid: creatinine ratio. A biochemical correlate of sleep associated hypoxemia. Am Rev Resp Dis 135: 534–538 (1987).PubMedGoogle Scholar
  15. 15.
    J.O. Wooliscroft, H. Colfer, and I.H. Fox. Hyperuricemia in acute illness: a poor prognostic sign. Am J Med 72: 59–62 (1982).CrossRefGoogle Scholar
  16. 16.
    O.D. Saugstad. Hypoxanthine as an indicator of hypoxia: Its role in health and disease through free radical production. Pediatr Res 23: 143–150 (1988).PubMedCrossRefGoogle Scholar
  17. 17.
    Y. Morita, Y. Nichida, N. Kamatani, and T. Miyamoto. Theophylline increases serum uric acid levels. J Allergy Clin Immunol 74: 707–712 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    J.M. McCord. Oxygen-derived free radicals in postischemic tissue injury. N Eng J Med 312: 159–163 (1985).CrossRefGoogle Scholar
  19. 19.
    D.N. Granger, G. Rutuli, and J.M. McCord. Superoxide radicals in feline intestinal ischemia. Gastroenterology 81: 22–29 (1981).PubMedGoogle Scholar
  20. 20.
    M.H. Schoenberg, B.B. Fredholm, K. Haglund, H. Jung, D. Sellin, M. Younes, and F.W. Schildberg. Studies on the oxygen radical mechanism involved in the small intestinal reperfusion damage. Acta Physiol Scand 124: 581–589 (1985).PubMedCrossRefGoogle Scholar
  21. 21.
    S.K. Cummigham, and T.V. Keavery. Effect of a xanthine oxidase inhibitor on adenine nucleotide degradation in hemorragic shock. Eur Surg Res 10: 305–313 (1978).CrossRefGoogle Scholar
  22. 22.
    S.N. Chattenges. Pharmacologic agents of potential value in protecting kidney from ischemie damage. Transpl Proc 10: 1579–1582 (1977).Google Scholar
  23. 23.
    N.L. Edwards, D. Recker, D. Airozo, and I.H. Fox. Enhanced purine salvage during allopurinol therapy: An important pharmacologie property in humans. J Lab Clin Med 98: 673–683 (1981).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Felícitas A. Mateos
    • 1
  • Pablo F. Gómez
    • 1
  • Juan G. Puig
    • 1
  • Manuel L. Jiménez
    • 1
  • Teresa H. Ramos
    • 1
  • José G. Mantilla
    • 1
  1. 1.Departments of Clinical Biochemistry and Internal Medicine“La Paz” Hospital, Universidad AutónomaMadridSpain

Personalised recommendations