Hypoxanthine and Xanthine Transport through the Blood-Brain Barrier in Hypoxanthine Phosphoribosyltransferase (HPRT) Deficiency

  • Manuel L. Jiménez
  • Juan G. Puig
  • Felícitas A. Mateos
  • Teresa H. Ramos
  • Ignacio P. Castroviejo
  • Julio O. Vázquez
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 253A)


Purine metabolism in the central nervous system (CNS) is characterized by: (i) reduced de novo purine synthesis (1), (ii) increased HPRT activity (2), and (iii) absence of detectable xanthine oxidase activity (3, 4). These facts determine that, instead of uric acid, the end products of purine nucleotide degradation in the CNS are hypoxanthine for adenine nucleotides and xanthine for guanine nucleotides (2, 5). On the other hand, HPRT hyperactivity seems to be essential to salvage an important amount of hypoxanthine for purine nucleotide synthesis. Hypoxanthine transport from blood to the brain could be another important source for the synthesis of purine nucleotides in the CNS (6, 7). The devastating neurological manifestations of complete HPRT deficiency suggest that hypoxanthine salvage is important for adequate neuronal function (8).


Uric Acid Xanthine Oxidase Adenine Nucleotide Purine Nucleotide Hypoxanthine PHOSPHORIBOSYLTRANSFERASE 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.J. Howard, L.A. Kerson and S.H. Appel. Synthesis de novo of purines in slices of rat brain and liver. J Neurochem 17: 121–128 (1970).PubMedCrossRefGoogle Scholar
  2. 2.
    F.M. Rosenbloom, W.N. Kelley, J. Miller, J.F. Henderson and J.E. Seegmiller. Inherited disorders of purine metabolism. J Am Med Ass 202: 175–177 (1967).CrossRefGoogle Scholar
  3. 3.
    U.A.S. Al-Khalidi and T.H. Chaglassian. The species distribution of xanthine oxidase. Biochem J 97: 316–320 (1965).Google Scholar
  4. 4.
    R.D. Berlin. Purines: Active transport by isolated choroid plexus. Science 163: 1194–1195 (1969).PubMedCrossRefGoogle Scholar
  5. 5.
    R. Hällgren, F. Niklasson, A. Terent, A. Akerblon and E. Widerlöv. Oxypurines in cerebrospinal fluid as indices of disturbed brain disease. Stroke 14: 382–388 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    J.D. Moyer and J.F. Henderson. Salvage of circulating hypoxanthine by tissues of the mouse. Can J Biochem Cell Biol 61: 1153–1157 (1983).PubMedCrossRefGoogle Scholar
  7. 7.
    R. Spector. Hypoxanthine transport through the blood-brain barrier. Neurochem Res 12: 791–796 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    W.N. Kelley and J.B. Wyngaarden. Clinical syndromes associated with hypoxanthine-guanine phosphoribosyltransferase deficiency. In: “The Metabolic Basis of Inherited Diseases”, J.B. Stanbury, J.B. Wyngaarden, D.S. Frederickson, J.L. Goldstein and M.S. Brown, eds., McGraw-Hill, New York, 1115–1143 (1983).Google Scholar
  9. 9.
    R. Spector. Hypoxanthine transport and metabolism in central nervous system. J Neurochem 50: 969–976 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    I. Pascual-Castroviejo, A. Vélez, J.G. Puig and M.L. Jiménez. Síndrome de Lesch-Nyhan con déficit total de la enzima HPRT. Neurología 1: 44–45 (1986).PubMedGoogle Scholar
  11. 11.
    L. Hernández Nieto, W.L. Nyhan, T. Page, et al. Síndrome de Lesch-Nyhan nueva variante con actividad hipoxantina-guanina fosforribosiltransfe-rasa (HPRT) superior a la de la enfermedad clásica y detección delrasgo heterocigoto en los hematíes de la portadora. Med Clin (Barc) 84: 68–71 (1985).Google Scholar
  12. 12.
    A. Andrés, M. Praga, L.M. Ruilope, et al. Partial defect of hypoxan-thine-guanine phsphoribosyltransferase presenting as acute renal failure. Nephron 46: 936–941 (1984).Google Scholar
  13. 13.
    J.G. Puig and I.H. Fox. Ethanol-induced activation of adenine nucleo-tide turnover: Evidence for a role of acetate. J Clin Invest 74: 936–941 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    F.A. Mateos, J.G. Puig, M.L. Jiménez and I.H. Fox. Hereditary xanthinuria: Evidence for enhanced hypoxanthine salvage. J Clin Invest 79: 847–852 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    N. Kageyama. A direct colorimetric determination of uric acid in serum and urine with uricase-catalase system. Clin Chim Acta 31: 421–427 (1971).PubMedCrossRefGoogle Scholar
  16. 16.
    M. Farstad, J.O. Haug, H. Linbak and O.E. Skaug. Uric acid in the cerebrospinal fluid in cerebral atrophy. Acta Neurol Scand 41: 52–58 (1965).PubMedCrossRefGoogle Scholar
  17. 17.
    F. Niklasson. Simultaneous liquid-chromatographic determination of hypoxanthine, xanthine, urate and creatinine in cerebrospinal fluid, with direct injection. Clin Chem 29: 1543–1546 (1986).Google Scholar
  18. 18.
    C. Carlsson and S.J. Dencker. Cerebrospinal uric acid in alcoholics. Acta Neurol Scand 49: 39–46 (1973).PubMedCrossRefGoogle Scholar
  19. 19.
    F. Lahoda and D. Athen. Typing of uric acid level in cerebrospinal fluid in neurological and psychiatric diseases. Adv Exp Med Biol 76B: 256–258 (1977).PubMedGoogle Scholar
  20. 20.
    Y. Sidi and B.S. Mitchell. Z-nucleotide accumulation in erythrocytes from Lesch-Nyhan patients. J Clin Invest 76: 2416–2419 (1985).PubMedCrossRefGoogle Scholar
  21. 21.
    H.A. Simmonds, L.D. Fairbanks, G.S. Morris, D.R. Webster and E.H. Harley. Altered erythrocyte nucleotide patterns are characteristic of inherited disorders of purine or pyrimidine metabolism. Clin Chim Acta 171: 197–210 (1988).PubMedCrossRefGoogle Scholar
  22. 22.
    M. Goldstein, L.T. Anderson, R. Revben and J. Dancis. Self-mutilation in Lesch-Nyhan disease is caused by dopaminergic denervation. Lancet 1: 338–339 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    P. Sholnick, P.J. Marangos, F.K. Goodwin, M. Edwards and S. Paul. Identification of inosine and hypoxanthine as endogenous inhibitors of (3H) diazepam binding in the central nervous system. Life Sci 23: 1473–1480 (1978).CrossRefGoogle Scholar
  24. 24.
    I.P. Lapin. Nicotinamide, inosine and hypoxanthine, putative endogenous ligands of the benzodiazepine receptor, opposite to diazepam are much more effective against kynurenine-induced seizures than against pentyl-enetetrazole-induced seizures. Pharmacol Biochem Behav 14: 589–593 (1981).PubMedCrossRefGoogle Scholar
  25. 25.
    M. Coleman, M. Langrebe and A. Langrebe. Progressive seizures with hyperuricosuria reversed by allopurinol. Arch Neurol 31: 238–242 (1974).PubMedCrossRefGoogle Scholar
  26. 26.
    M. Coleman. Allopurinol: A new application as a metabolic anticonvulsant. 15th Epilepsy International Symposium. Washington 135 (1985). Abstract.Google Scholar
  27. 27.
    P. de Marco and P. Zagnoni. Allopurinol and severe epilepsy. Neurology 36: 1538–1539 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Manuel L. Jiménez
    • 1
  • Juan G. Puig
    • 1
  • Felícitas A. Mateos
    • 1
  • Teresa H. Ramos
    • 1
  • Ignacio P. Castroviejo
    • 1
  • Julio O. Vázquez
    • 1
  1. 1.Departments of Internal Medicine and Clinical Biochemistry, “La Paz” HospitalUniversidad AutónomaMadridSpain

Personalised recommendations