Advertisement

Hypoxanthine Accumulation and Dopamine Depletion in Lesch-Nyhan Disease

  • Roberta M. Palmour
  • Timothy W. Heshka
  • Frank R. Ervin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 253A)

Abstract

According to the postulates of Garrod3, it should be possible to understand all of the pathophysiological consequences of an inborn error of metabolism within the context of metabolite changes secondary to the primary lesion. Thus in untreated phenylketonuria, growth retardation is thought to be a consequence of imbalances in the relative concentrations of specific amino acids and hypopigmentation is thought to result from deficiency of tyrosine, the immediate precursor of melanin7. In Lesch-Nyhan disease, gout is readily attributed to elevated uric acid and xanthine, as is nephrotoxicity in untreated cases14. There is substantial understanding, at the metabolic level, of the relationship between blocked purine salvage and aspermiogenesis17.

Keywords

Uric Acid Caudate Nucleus Dopamine Depletion Treated Side Left Lateral Ventricle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Criswell, H., Mueller, R. A. and Breese, G. R., Assisment of purine-dopamine interactions in 6-hydroxydopamine-lesioned rats, J. Pharmacol. Exp. Therap. 244: 493 (1988).Google Scholar
  2. 2.
    Fredholm, B. B., Herrera-Marschitz, M., Jonzon, B., Lindstrom, K. and Ungerstedt, U., On the mechanism by which methylxanthines enhance apomorphine-induced rotation behavior in the rat, Pharmacol. Biochem. Behav. 19: 535 (1983).PubMedCrossRefGoogle Scholar
  3. 3.
    Garrod, A. E., Inborn errors of metabolism (Croonian Lectures), Lancet 1: 73, 142, 214 (1908).Google Scholar
  4. 4.
    Goldstein, M., Anderson, L.T., Reuben, R. and Dancis, J., Self-mutilation in Lesch-Nyhan disease is caused by dopaminergic denervation, Lancet 1: 338 (1985).PubMedCrossRefGoogle Scholar
  5. 5.
    Green, R. D., Proudfit, H. K., and Yeung, S. H., Modulation of striatal dopaminergic function by local injection of 5′-N-ethylcarboxamide adenosine, Science, 218: 58 (1982).PubMedCrossRefGoogle Scholar
  6. 6.
    Kelley W. N. and Wyngaarden J. B. (1983) Clinical syndromes associated with HPRT deficiency, in The Metabolic Basis of Inherited Disease, 5th edition, J. B. Stanbury, J. B. Wyngaarden, D. S. Frederickson, J. L. Goldstein, and M. S. Brown, eds., McGraw-Hill, New York (1983).Google Scholar
  7. 7.
    Knox, W. E., Phenylketonuria, in The Metabolic Basis of Inherited Disease, 3rd ed., J. B. Stanbury, J. B. Wyngaarden and D. S. Fredrickson, eds., McGraw Hill, New York, (1972).Google Scholar
  8. 8.
    Krustolovic, A. M., Brown, P. R. and Rosle, D. M., Identification of nucleosides and bases in serum and plasma samples by reverse phase HPLC, Anal. Biochem. 49: 2237 (1977).Google Scholar
  9. 9.
    Lloyd, K. G., Hornykiewicz, O., Davidson, L., Shannak, K., Farley, I., Goldstein, M., Shibuya, M., Kelley, W. N., and Fox, I. H., Biochemical evidence of dysfunction of brain neurotransmitters in the Lesch-Nyhan syndrome. N. Engl. J. Med., 305: 1106 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    Nyhan, W. L., Behavior in the Lesch-Nyhan syndrome, J. Autism child Schizophr., 6: 235 (1971).CrossRefGoogle Scholar
  11. 11.
    Palmour, R. M., Schucher, K., Pacheco, P., and Ervin, F. R., Dopamine depletion and self-mutilation in the rat: A model for Lesch-Nyhan disease, Pharmacol. Biochem. Behav., in press.Google Scholar
  12. 12.
    Porter, N. M., Radulovacki, M. and Green, R. D., Desensitization of adenosine and dopamine receptors in rat brain after treatment with adenosine analogs, J. Pharmacol. Exp. Therap. 244: 218 (1988).Google Scholar
  13. 13.
    Rosenbloom, F. M., Kelley, W. N., Miller, J., Henderson, J. F. and Seegmiller, J. E., Inherited disorder of purine metabolism: Correlation between central nervous system dysfunction and biochemical defects J. Amer. Med. Assoc. 202: 175 (1967).CrossRefGoogle Scholar
  14. 14.
    Seegmiller, J. E., Gout and hyperuricemia, in Metabolic Control and Disease, P. K. Bondy and L. E. Rosenberg, eds., W. B. Saunders, Philadelphia (1981).Google Scholar
  15. 15.
    Silverstein, F.S., Johnston, M.V., Hutchinson, R.J. and Edwards, N.L., Lesch-Nyhan syndrome: CSF neurotransmitter abnormalities. Neurol 35: 907 (1985).CrossRefGoogle Scholar
  16. 16.
    Ungerstedt, U., and Arbuthnott, G., Quantitative recording of rotational behaviour in rats after 6-OH dopamine lesions of the rat nigrostriatal dopamine system, Brain Res 24: 486 (1970).CrossRefGoogle Scholar
  17. 17.
    Watts, R. W. E., Spellacy, E., Gibbs, D. A., Allsop, J., McKeran, R. O. and Slavin, G. E., Clinical, post-mortem, biochemical and therapeutic observations on the Lesch-Nyhan Syndrome with particular reference to the neurological manifestations, Q. J. Med., 201: 43 (1982).Google Scholar
  18. 18.
    Westerink, B. H. C. and Mulder, T. B. A., Determination of picomole amounts of DA, NE, DOPAC, HVA and HIAA using HPLV with a novel type of electrochemical detection. J Neurochem 36: 1449 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Roberta M. Palmour
    • 1
  • Timothy W. Heshka
    • 1
  • Frank R. Ervin
    • 1
  1. 1.Departments of Psychiatry, Biology and Centre for Human GeneticsMcGill UniversityMontrealCanada

Personalised recommendations