Advertisement

ITP-Pyrophosphohydrolase and Purine Metabolism in Human Erythrocytes

  • Geert van Waeg
  • Frank Niklasson
  • Åke Ericson
  • Carl-Henric de Verdier
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 253A)

Abstract

In a study on liquid erythrocyte preservation (de Verdier et al, 1987), we measured purine nucleotides in erythrocytes from 103 blood donors. We found ITP concentration above detection limit (0.05 mmol/1 in this study) in fresh erythrocytes from one donor and in erythrocytes stored for 42 days in CPD-SAGMAN solution (Högman et al, 1983) in another donor. The present study was designed in order to explore whether these erythrocytes showed any other sign of aberrant purine metabolism before or after storage. In view of an ongoing study on the use of the commonly prescribed purine analogue allopurinol in liver function evaluation (van Waeg et al, 1988a), the metabolism of allopurinol in normal and ITP-pyrophosphohydrolase (ITPase) deficient erythrocytes was also studied.

Keywords

Human Erythrocyte Purine Base Purine Nucleoside Phosphorylase Salvage Rate Homozygote Mutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Capuozzo E, Gigante M, Salerno C, Crifo C, 1986. Hypoxanthine transport through human erythrocyte membranes. Adv Exp Med Biol, 195B: 71–74.Google Scholar
  2. de Verdier C-H, Niklasson F, van Waeg G, Ericson Å, Högman C, 1987. Purine metabolism in normal and high-ITP human erythrocytes. Attempts to evaluate the ability to store the cells. Biomed Biochim Acta, 46: S263–S267.PubMedGoogle Scholar
  3. Ericson Å, Niklasson F, de Verdier C-H, 1985. Metabolism of guanosine in human erythrocytes. Vox Sang, 48: 72–83.PubMedCrossRefGoogle Scholar
  4. Fox I, Wyngaarden J, Kelley W, 1970. Depletion of erythrocyte phosphoribo-sylpyrophosphate in man: A newly observed effect of allopurinol. N Eng J Med, 283: 1177–1182.CrossRefGoogle Scholar
  5. Giacomelli A, Salerno C, 1979. Hypoxanthine uptake by human erythrocytes. FEBS Lett, 107: 203–204.CrossRefGoogle Scholar
  6. Henderson F, Zombor G, Fraser J, McCoy E, Verhoef V & Morris A, 1977. Factors affecting inosinate synthesis and inosine triphosphate accumulation in human erythrocytes. Can J Biochem, 55: 359–364.PubMedCrossRefGoogle Scholar
  7. Hershko A, Razin A, Shoshani T, Mager J, 1967. Turnover of purine nucleotides in rabbit erythrocytes. II: Studies in vitro. Biochim Biophys Acta, 149: 59–73.Google Scholar
  8. Hershko A, Razin A, Mager J, 1969. Regulation of the synthesis of 5-phospho-ribosyl-1-pyrophosphate in intact red blood cells and in cell-free preparations. Biochim Biophys Acta, 184: 64–76.PubMedCrossRefGoogle Scholar
  9. Högman C, Akerblom O, Hedlund K, Rosen I, Wiklund L, 1983. Red cell suspensions in SAGM medium. Vox Sang, 45: 217–223.PubMedCrossRefGoogle Scholar
  10. Holmes S, Turner B, Hirschhorn K, 1979. Human inosine triphosphatase: catalytic properties and population studies. Clin Chim Acta, 97: 143–153.PubMedCrossRefGoogle Scholar
  11. Krenitsky T, Elion G, Strelitz R, Hitchings G, 1967. Ribonucleotides of allopurinol and oxoallopurinol. J Biol Chem, 242: 2675–2682.PubMedGoogle Scholar
  12. MacKenzie J, Sorensen L, 1973. Guanosine 5′-phosphate reductase of human erythrocytes. Biochim Biophys Acta, 327: 282–294.PubMedGoogle Scholar
  13. Soder C, Henderson J, Zombor G, McCoy E, Verhoef V, Morris A, 1976. Relationships between nucleoside triphosphate pyrophosphorylation activity and inosine triphosphate accumulation in human erythrocytes. Can J Biochem, 54: 843–847.PubMedCrossRefGoogle Scholar
  14. Sweetman L, 1968. Urinary and cerebrospinal fluid oxypurine levels and allopurinol metabolism in the Lesch-Nyhan syndrome. Fedn Proc, 27: 1055–1059.Google Scholar
  15. Thomas G, Feldman S, Kramer W, 1982. Interaction of allopurinol with human blood. Biochem Pharmacol, 31: 1937–1940.PubMedCrossRefGoogle Scholar
  16. Ting A, Sherman I, 1981. Hypoxanthine transport in normal and malaria-infected erythrocytes. Int J Biochem, 13: 955–958.PubMedCrossRefGoogle Scholar
  17. Vanderheiden B, 1969. Genetic studies of human erythrocyte inosine triphosphate. Biochem Genet, 3: 289–297.CrossRefGoogle Scholar
  18. Vanderheiden B, 1972. Micro assay of ITP pyrophosphohydrolase by liquid scintillation. Anal Biochem, 49: 459–466.PubMedCrossRefGoogle Scholar
  19. Vanderheiden B, 1979. Purification and properties of human erythrocyte inosine triphosphate pyrophosphohydrolase. J Cell Physiol, 98: 41–48.PubMedCrossRefGoogle Scholar
  20. van Waeg G, Lööf L, Groth T, Niklasson F, 1988a. Allopurinol kinetics in man as a means to assess liver function: evaluation of an allopurinol loading test. Scand J clin Lab Invest, 48: 45–57.PubMedGoogle Scholar
  21. van Waeg G, Niklasson F, Ericson Å, de Verdier C-H, 1988b. Purine metabolism in normal and ITP-pyrophosphohydrolase-deficient human erythrocytes. Clin Chim Acta, 171: 279–292.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Geert van Waeg
    • 1
  • Frank Niklasson
    • 1
  • Åke Ericson
    • 1
  • Carl-Henric de Verdier
    • 1
  1. 1.Department of Clinical ChemistryUppsala University Akademiska SjukhusetUppsalaSweden

Personalised recommendations