Advertisement

Further Evidence for a ‘New’ Purine Defect, Inosine Triphosphate (ITP) Pyrophosphohydrolase Deficiency

  • H. Anne Simmonds
  • Vanna Micheli
  • John A. Duley
  • Lynette D. Fairbanks
  • David A. Hopkinson
  • Roland J. Levinsky
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 253A)

Abstract

Inosine triphosphate (ITP) was originally identified in 1955 in nucleotide extracts from rat liver mitochondria. Vanderheiden in 1964 was the first to report high levels of ITP in fresh human erythrocytes He subsequently found high ITP concentrations in the erythrocytes of 7 out of some 6000 subjects screened2 and demonstrated that the presence of ITP could be related to a deficiency of the enzyme inosine triphosphate pyrophosphohydrolase (ITPase: EC 3.6.1.19). Subsequent studies by Henderson’s group also supported an inverse relationship between ITP concentrations and ITPase activity.

Keywords

High Performance Liquid Chromatography Lysed Erythrocyte Intact Erythrocyte Inosine Triphosphate Absorbance Unit Full Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.S. Vanderheiden. Inosine triphosphate in human erythrocytes: a genetic trait. Proc Xth Congress Int Soc Blood Transf, Stockholm (1964): 540.Google Scholar
  2. 2.
    B.S. Vanderheiden. Genetic studies of human erythrocyte inosine triphosphatase. Biochem Genet 3: 289 (1969).CrossRefGoogle Scholar
  3. 3.
    J.H. Fraser, H. Meyers, J.F. Henderson, L.W. Brox and E.E. McCoy. Individual variation in ITP accumulation in human erythrocytes. Clin Biochem 8: 353 (1975).PubMedCrossRefGoogle Scholar
  4. 4.
    H.A. Simmonds, L.D. Fairbanks, G.S Morris, D.R Webster and E.H. Harley. Altered erythrocyte nucleotide patterns are characteristic of inherited disorders of purine and pyrimidine metabolism. Clin Chim Acta 171: 197 (1988).PubMedCrossRefGoogle Scholar
  5. 5.
    L.D Fairbanks, H.A. Simmonds and D.R. Webster. Use of intact erythrocytes in the diagnosis of inherited purine and pyrimidine disorders. J Inner Metab Dis 10: 174 (1987).CrossRefGoogle Scholar
  6. 6.
    S.A Holmes, B. M. Turner and K. Hirschhorn. Human inosine triphosphatase: catalytic properties and population studies. Clin Chim Acta 97: 143 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    G. van Waeg, F Niklasson, A. Ericson and C.-H. de Verdier. Purine metabolism in normal and ITP-pyrophosphohydrolase-def icient human erythrocytes. Clin Chim Acta 171: 279 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    R.C. Willis, A.H. Kaufman and J.E. Seegmiller. Purine nucleotide reutilisation by human lymphoblast lines with aberrations in the inosinate cycle. J Biol Chem 259: 4157 (1984).PubMedGoogle Scholar
  9. 9.
    P.A. Berman, D.A. Black, L. Human and E.H. Harley. An oxypurine cycle in human erythrocytes regulated by pH, inorganic phosphate and molecular oxygen. Klin Wochenschr 65 (Suppl X): 28 (1987).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • H. Anne Simmonds
    • 1
  • Vanna Micheli
    • 4
  • John A. Duley
    • 1
  • Lynette D. Fairbanks
    • 1
  • David A. Hopkinson
    • 2
  • Roland J. Levinsky
    • 3
  1. 1.Purine Research LaboratoryUMDS Guy’s HospitalItaly
  2. 2.MRC Human Biochemical Genetics UnitItaly
  3. 3.Institute of Child HealthLondonUK
  4. 4.Istituto di Chimica BiologicaSienaItaly

Personalised recommendations