Advertisement

Biomphalaria Glabrata, A Continuing Environmental Biodeteriogen: Alterations in the Levels of Some Hydrolases Following Schistosoma Mansoni Infection. 1. Phosphatases and N-Acetyl-Beta-D-Glucosaminidase

  • Afzal A. Siddiqui
  • Marwan M. Amarin
  • Betty R. Jones

Abstract

The snail intermediate host of Schistosoma mansoni, has been considered the weakest link in the life cycle of this parasite. Chemical molluscicides are not specific for fresh water snails, and as a result all aquatic biota suffer (Duncan, 1980) and limited progress has been made in biological control research (Mone et al., 1986). The ideal of attaining a more effective and specific molluscicide has not yet materialized because of our limited knowledge of the physiological and biochemical characteristics of the Schistosoma-Biomphalaria relationship (for review see, Jordan, 1985). As part of our efforts to understand the physiology of this host-parasite relationship we investigated the kinetic changes in the activities of phosphatase and n-acetyl ß-D-glusosaminadase in B. glabrata following S. mansoni infection.

Keywords

Acid Phosphatase Sodium Fluoride Schistosoma Mansoni Snail Host Sodium Arsenate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brafford, M. M. (1976). A rapid and sensitive method for the quantitation of proteins utilizing the principle of dye binding. Anal. Biochem., 72, 248–354.Google Scholar
  2. Brenna, 0., Perrela, M., Pace, M. and Pietta, P.G. (1975). Affinnity chromatography purification of alkaline phosphatase from calf intestine. Biochem. J., 151, 219–296.Google Scholar
  3. Chen, T. C. and Garrabrant, T. A. (1977). Acid phosphatase in granlocytic capsules formed in strains of Biomphalaria glabrata totally and partially resistant to Schistosoma mansoni. Intl. J. Parasitol., 7, 467–472.Google Scholar
  4. Duncan, J. (1980). The toxicology of molluscicides. The organotis. Pharmacol. and Therap., 10, 407–429.Google Scholar
  5. Giovannini, E., Principato, G. B., Ambrosíni, M. V., Menghini, A. R. and Dellanata, M. (1978). Purification and partial characterization of the alkaline phosphatase from Auolobophora caliginosa. Comp. Biochem. and Physiol., 61B, 49–51.Google Scholar
  6. Clew, R. H., Czuczman, M. S., Diven, W. F., Beren, R. L., Pope, M. T. and Katsoulis, D. E. (1982). Partial purification and characterization of particulate acid phosphatase of Leishmania donovani promastigotes. Comp. Biochem. and Physiol., 72 B, 581–590.Google Scholar
  7. Granath, W. O. and Yoshino, T. P. (1983a). Characterization of molluscan phagocyte subpopulations based on lysosomal enzyme markers. J. Exptl. Zool., 226, 205–210.Google Scholar
  8. Granath, W. O. and Yoshino, T. P. (1983b). Lysosomal enzyme activities in susceptible and refractory strains of Biomphalaria glabrata during the course of infection with Schistosoma mansoni. J. Parasitol., 69, 1018 1086.Google Scholar
  9. Hauk, E. D. and Hardy, J. L. (1984). Alkaline phossphatases of the mosquito, Culex tarsalis coquillett. Comp. Biochem. Physiol., 78B, 303–310.Google Scholar
  10. Jordan, P. (1985). Schistosomiasis--The St. Lucia Project. Cambridge University Press, Cambridge, ENG. p. 442.Google Scholar
  11. Kassim, O. O. and Richards, C. S. (1979). Host reactions in Biomphalaría glabrata to Schistosoma mansoni miracidia, involving variations in parasite-strains, numbers and sequence of exposures. Intl. J. Parasitol., 9, 565–570.Google Scholar
  12. Mone, H., Theron, A. and Combes, C. (1986). Interaction between the Biomphalaria glabrata - Schistosoma mansoni host parasite system and the non-target molluscs: Influence on cercarial production. J. Parasitol., 72, 410–416.Google Scholar
  13. Principato, G. B., Aisa, M. C., Biagioni, M. and Giovannini, E. (1982). Partial purification and characterization of an alkaline phosphatase in Helix neurorahs and in Octopus vulgaris. Comp. Biochem. and Physiol., 72B, 325–328.Google Scholar
  14. Siddiquí, A. A. (1986). Developmental regulation of protein synthesis in Hymenolepis diminuta. Ph.D. Thesis, University of Western Ontario, London, CAN. P. 171.Google Scholar
  15. Siddiqui, A. A. and Nizami, W. A. (1982). Kinetic and electrophoretíc studies on acid and alkaline phosphatases of metacercaríae of Clinostomum complanatum. J. Helminthol., 56, 17–22.CrossRefGoogle Scholar
  16. Siddíqui, A. A., Ahmad, M. and Nizamí, W. A. (1986). Phosphatase system of some common poultry parasites: Ascaridía Valli and Cotugnia diagonopora. Ind. Vet. J., 63, 14–17.Google Scholar
  17. Siddiqui, A. A., Siddiqui, A. H. and Hague, M. (1985). Acid Phosphatases of six species of digenetic trematodes. Ind. J. Parasitol., 9, 69–53.Google Scholar
  18. Siddiqui, A.A. and Podesta, R.B. (1985). Subcellular Fractionation of Hymenolepis diminuta with Special Reference to the Localization of Marker Enzymes. J. Parasítol., 71, 415–421.CrossRefGoogle Scholar
  19. Spector, T. (1978). Refinement of the Coomassie Blue Method of Protein Quantitatíon. Anal. Biochem. 86, 142–146.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Afzal A. Siddiqui
    • 1
  • Marwan M. Amarin
    • 2
  • Betty R. Jones
    • 1
  1. 1.Department of Biology, Parasitology and Electron Microscopy LaboratoryMorehouse CollegeAtlantaUSA
  2. 2.Department of BiologyAtlanta UniversityAtlantaUSA

Personalised recommendations