Skip to main content

A Study of Al°, Zn°, Sn°, V°, Ti°, Co°, Cu°, Ni° or Fe° as Sole Electron Sources for Methanogenesis, and the Effects of Organotins on Methanogenic Bacteria

  • Chapter
Biodeterioration Research 2
  • 156 Accesses

Abstract

It was recently shown that elemental iron, either as pure iron or as mild steel, can be used in place of H2 as the sole electron donor for methanogenesis from CO2 (Daniels et al., 1987). Desulfovibrio has also been demonstrated to use some electrons from Fe° to reduce sulfate (Cord-Ruwisch and Widdel, 1986). Thermodynamically, the use of Fe° as an electron donor for both methanogenesis and sulfate reduction to sulfide is favorable, with ∆GO′ values of −136 and −152 kJ/mole product, respectively. It is thought that, due to electron consumption from the iron and due to sulfide production by both groups of organisms (Daniels et al., 1986), both methanogens and sulfate reducers can contribute to biocorrosion of ferrous metals. Other metals have now been examined here for their ability to donate electrons for methanogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belay, N., and Daniels, L. (1987). Production of ethane, ethylene and acetylene from halogenated hydrocarbons by methanogenic bacteria. Appl. Environ. Microbiol., 53, 1604–1610.

    CAS  Google Scholar 

  • Blair, W.R., Olson, G.J., Brinkman, F.E., and Iverson, W.P. (1982). Accumulation and fate of tri-n-butytin cation in estaurine bacteria. Microbial Ecology, 8, 241–251.

    Article  CAS  Google Scholar 

  • Brandis, A., Thauer, R.K., and Stetter, K.O. (1981). Relatedness of strains AH and Marburg of Methanobacterium thermoautotrophicum. Zbl. Bakt. Hyg. I Abt. Orig. C2, 311–317.

    CAS  Google Scholar 

  • Bryant, M.P., Wolin, E.A., Wolin, M.J. and Wolfe, R.S. (1967). Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Mikrobiol., 59, 20–31.

    Google Scholar 

  • Cord-Ruwisch, R., and Widdel, F. (1986). Corroding iron as a hydrogen source for sulphate reducation in growing cultures of sulphate-reducing bacteria. Appl. Microbiol. Biotechnol., 25, 169–174.

    Article  CAS  Google Scholar 

  • Daniels, L., Belay, N., and Rajagopal, B.S. (1986). Assimilatory reduction of sulfate and sulfite by methanogenic bacteria. Appl. Environ. Microbiol., 51, 703–709.

    CAS  Google Scholar 

  • Daniels, L., Belay, N., Rajagopal, B.S., and Weimer, P.J. (1987). Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons. Science, 237, 509–511.

    Article  CAS  Google Scholar 

  • Hallas, L.E., and Cooney, J.J. (1981). Tin and tin-resistant microorganisms in Chesapeake Bay. Appl. Environ. Microbiol., 41, 446–471.

    Google Scholar 

  • Hallas, L.E., Thayer, J.S., and Cooney, J.J. (1982). Factors affecting the toxic effect of tin on estuarine Microbiol.,Appl. Environ. Microbiol., 44, 193–197.

    CAS  Google Scholar 

  • Huber, J., Thomm, M., Konig, H., Thies, G.,and Stetter, K.O. (1982). Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch. Microbiol., 132, 47–50

    Google Scholar 

  • Mah, R.A., Smith, M.R., and Baresi, L. (1972). Studies on an acetate fermenting strain of Methanosarcina. Appl. Environ. Microbiol., 35, 1174–1184.

    Google Scholar 

  • Pettibone, G.W., and Cooney, J.J. (1988). Toxicity of methyl tins to microbial populations in estuarine sediments. J. Industrial Microbiol., 2, 373–378.

    Article  CAS  Google Scholar 

  • Sparling, R., and Daniels, L. (1988). The specificity of inhibition of methanogenic bacteria by bromoethanesulfonate. Can. J. Microbiol., 33, 1132–1136.

    Article  Google Scholar 

  • Valkirs, A.O., Seligman, P.F., Olson, G.J., Brinkman, F.E., Matthias, C.L., and Bellama, J.M. (1987). Di-and tributyltin species in marine and estaurine waters. Inter-laboratory comparison of two ultratrace analytical methods employing hydride generation and atomic absorption or flame photometric detection. Analyst, 112, 17–21.

    Article  CAS  Google Scholar 

  • Yamada, J., Tatsuguchi, K., and Watanabe, T. (1978). Effects of trialkyltin chlorides on microbial growth. Agric. Biol. Chem., 42, 1867–1870.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Belay, N., Daniels, L. (1989). A Study of Al°, Zn°, Sn°, V°, Ti°, Co°, Cu°, Ni° or Fe° as Sole Electron Sources for Methanogenesis, and the Effects of Organotins on Methanogenic Bacteria. In: O’Rear, C.E., Llewellyn, G.C. (eds) Biodeterioration Research 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5670-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5670-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5672-1

  • Online ISBN: 978-1-4684-5670-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics