Structure of “Sensory” Nerves and Serotonin-Like Immunofluorescent Activity in Schistosoma Mansoni Miracidia and Cercariae

  • Betty R. Jones
  • Steve C. Pan
  • Marwan M. Amarin


Schistosomiasis has been described as “one of the most devastating diseases of mankind, second only to malaria in its deleterious effects on the social and economic development of populations in many warm areas of the world.” The disease is world-wide and is conservatively estimated to affect 300 million people (McCulley et al., 1976).


Nerve Ending Schistosoma Mansoni Snail Host Glycogen Particle Indirect Immunofluorescent Staining 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barber, V. and Wright, D.E. (1969). The fine structure of the sense organs of the Cephalopod mollusc. Nautilus, Z. Zellforsch. Mikrosk. Anat., 102, 293–312.Google Scholar
  2. Barker, L. R., Bueding, E. and Timms, A. R. (1966). The possible role of acetylcholine in Schistosoma mansoni. Br. J. Pharmacol., 26, 656–665Google Scholar
  3. Seitz, B. and Kravitz, J. (1983). Serotonín-like Immunoreactivíty in Immature Lobsters. J. Neurosci., 3, 585–602.Google Scholar
  4. Bennett J., Bueding, E., Timms, A.R. and Engstrom, R.G. (1969). Occurrence and levels of 5-hydroxytryptamine in S. mansoni. Molec. Pharmacol., 5, 542–545.Google Scholar
  5. Bennett, C.E., Wilson, R.A. and Denison, J. (1972). An investigation of the molecular characteristics important in stimulation of an attachment response by the miracidium of Fasciola hepatica. Comp. Biochem. Physiol., 41A, 129–137.Google Scholar
  6. Bennett, J. and Bueding, E. (1970). Histochemical localization on biogenic amines and 5-hydroxytryptamíne levels in Schístosoma mansoni. J. Parasitol., 56 (Sect. 2, Part 1), 28.Google Scholar
  7. Bennett, J. and Bueding, E. (1971). Localization of biogenic amines in Schistosoma mansoni. Comp. Biochem. Physiol., 39A, 859–867.Google Scholar
  8. Bennett, J. Bueding, E., Timms, A.R. and Engstrom, R.G. (1969). Occurrence and levels of 5-hydroxytryptamine in Schistosoma mansoni. Molec. Pharmacol., 5, 542–545.Google Scholar
  9. Bennett, J., Pert, C., Chou T.C.T. and Bueding, E. (1972). Uptake of 5hydroxytryptamine by Schistosoma mansoni. Proc. 5th Intl. Congr. Pharmacol., p. 93.Google Scholar
  10. Bennett, J.L. and Bueding, E. (1973). Uptake of 5-hydroxytryptamine by Schistosoma mansoni. Molec. Phamacol., 9, 311–319.Google Scholar
  11. Brasio, R., Magalhaes, L., Miller J. and Carvalho, J. (1985). Rev. Saude Pub., 19, 154–170.Google Scholar
  12. Brooker, B.E. (1972). The sense organs of trematode míracidía. In: Behavioral Aspects of Parasite Transmission, pp. 171–180 ( E.U. Canning and C.W. Wright, eds.), Academic Press, NY.Google Scholar
  13. Cheng, T.C. (1968). The compatibility and incompatibility concept as related to trematodes and molluscs. Pacific Sci., 22, 141–160Google Scholar
  14. Chernín E. (1968). Interference with the capacity of Schistosoma mansoni miracidia to infect the molluscan host. J. Parasítol., 54, 509–516.CrossRefGoogle Scholar
  15. Chernin, E. (1957). A method of securing bacteriologically sterile snails (Australorbis glabratus). Proc. Soc. Exp. Biol. Med., 96, 204–210.Google Scholar
  16. Chernin, E. (1970). Behavioral responses of miracidia of Schistosoma mansoni and other trematodes to substances emitted by snails. J. Parasitol., 56, 287–296.CrossRefGoogle Scholar
  17. Chernin, E. (1972). Penetrative activity of Schistosoma mansoni miracídia stimulated by exposure to snail-conditioned water. J. Parasitol., 58, 209–212.CrossRefGoogle Scholar
  18. Chernin, E. (1974). Some host-finding attributes of Schistosoma mansoní miracidía. Amer. J. Trop. Med.., 23, 320–327.Google Scholar
  19. Chernin, E. and Dunavan, C. A. (1962). The influence of host-parasite dispersion upon the capacity of Schistosoma mansoni miracidia to infect Australorbis glabratus. Amer. J. Trop. Med. Em., 11, 455–471.Google Scholar
  20. Cooper, J.R., Bloom, F.E. and Roth, R.H. (1970). The Biochemical Basis of Neuropharmacology, Oxford University Press, NY.Google Scholar
  21. Dixon, K.E. and Mercer, E.H. (1965). The fine structure of the nervous system of the cercaríae of the liver fluke, Fasciola hepatica. J. Parasitol., 51, 967–976.Google Scholar
  22. Ercoli, N., Payares, G. and Nunez, D. (1985). Schistosoma mansoni neurotransmitters and the mobility of cercariae and schistosomules. Exp. Parasitol., 59, 204–216.Google Scholar
  23. Estey, S. J. and Mansour, T. E. (1987). Nature of serotonin-activated adenylate cyclase during development of Schistosoma mansoni. Molec. Biochem. Parasitol., 26, 47–59.Google Scholar
  24. Fahrenback, W.H. and Kneeland, J.E. (1965). Critical underfocus in electron microscopy. Norel. Rep., 12, 107–110.Google Scholar
  25. Faust, E.C. and Hoffman, W.A. (1934). Studies on schistosomiasís mansoni in Puerto Rico, III. Biological studies 1. The extramammalían phases of the life cycle. P. R. J. Pub. Hlth. Trop. Med., 10, 1–47.Google Scholar
  26. Fournier, A. and Theron, A. (1985). Sectorisation Morpho-Anatomique et Fonctionnelle du sporocyte stefil de Schistosoma mansoni, Z. Parasitenkd., 71, 325–336.CrossRefGoogle Scholar
  27. Gordon, R. K. and Chiang, P. K. (1986). Antimuscarinic activities of hycanthone analogsi possible relationship with animal toxicity. J. Pharmacol. Exp. Ther., 236, 85–89.Google Scholar
  28. Gordon, R.M., Davey T.H. and Preston, H. (1934). The transmission of human bilharziasis in Sierra Leone, with an account of the life-cycle of the schistosomes concerned, S. mansoni and S. haematobium. Ann. Trop. Med. Parasitol, 28, 323–418.Google Scholar
  29. Gustafsson, M. K. (1987). Immunocytochemical demonstration of neuropeptides and serotonin in the nervous system of adult Schistosoma mansonir Parasitol. Res., 74, 168–174.Google Scholar
  30. Hokfelt, T., Fuxe, K. and Goldstein (1975). Applications of Immunohistochemistry to Studies on Monoamine Cell Systems with Special References to Nervous Tissue. Ann. NY. Acad. Sci., 254, 407.Google Scholar
  31. Jones, B.R. and Amarin, M. (1988). Fine Structure of “Sensory” Nerve Endings in Schistosome Miracidia. FASEB, 2, p. A1736, Abstr. No. 8364.Google Scholar
  32. Jones, B.R. and Pan, C. (1988). Structure of “Sensory” Surface Nerve Endings in Schistosoma mansoni miracidia. Proc. of the 46th Ann. Meeting of EMSA, 1: 272–273.Google Scholar
  33. Lyons, K. (1972). Sense organs of monogeneans. Zool. J. Linnean Soc., 51 ( Suppl. I), 181–199.Google Scholar
  34. Machado, C. R., Machado, A. M. and Pellegrino, J. (1972). Catecholaminecontaining neurons in Schistosoma mansoni. Z. Zellforsch. Mikrosk. Anat., 124, 230–237.Google Scholar
  35. Maldonado, J.F. and Acosta-Matienzo, J. (1947). The development of Schistosoma mansoni in the snail intermediate host, Australorbis glabratus. P. R. J. Pub. Hlth. Trop. Med., 22, 331–373.Google Scholar
  36. McCulley, R. (1976). Diseases caused by Trematodes, In: Pathology of Tropical and Extraordinary Diseases, Armed Forces Institute of Pathology, vol. 2, pp. 482–508.Google Scholar
  37. Mone, H., Theron, A. and Combes (1986). Interaction between the Biomphalaria glabrata-Schistosoma mansoni host-parasite system and the non-target molluscs: Influenze on Cercarial Production, J. Parasitol., 72, 410–416.Google Scholar
  38. Ottolina, C. (1957). El miracidio del Schistosoma mansoni. Anatomiacitologia-fisciologia. Rev. Sanid. Asist. Soc., 22, 1–435.Google Scholar
  39. Pan, C. (1965). Studies on the host-parasite relationship between Schistosoma mansoni and the snail Australorbis glabratus. Amer. J. Trop. Med. Hyg., 14, 931–976.Google Scholar
  40. Pan, S.C. (1980). Fine Structure of the miracidium of Schistosoma mansoni. J. Inverte. Path., 36, 307–372.Google Scholar
  41. Pax, R. A., Siefker, C. and Bennett, J. L. (1984). Schistosoma mansoni: differences in acetylcholine, dopamine, and serotonin control of circular and longitudinal parasite muscles. Exp. Parasitol., 58, 314324.Google Scholar
  42. Porter, K.R. and Bonneville, M.A. (1968). Fine Structure of Cells and Tissues. Lea and Febiger, Philadelphia, PA.Google Scholar
  43. Schutte, C.H.J. (1974). Studies on the South African strain of Schistosoma mansoni-Part 1: Morphology of the miracidium. S. Afr. J. Sci. 70, 299–302.Google Scholar
  44. Sternberger, L.A. (1979). Immunocytochemistry, John Wiley and Sons, NY, pp. 104–169.Google Scholar
  45. Upatham, E. J. (1972a). Exposure of caged Biomphalaria glabrata (say) to investigate dispersion of miracidia of Schistosoma mansoni sambon in outdoor habitats in St. Lucia. J. Helminthol., 46, 297–306.Google Scholar
  46. Upatham, E. J. (1972b). Effect of water depth on the infection of Biomphalaria glabrata by miracideia of St. Lucian Schistosoma mansoni under laboratory and field conditions. J. Helminthol., 46, 317–325.Google Scholar
  47. Upatham, E. J. (1973). Location of Biomphalaria glabrata (say) by miracidia of Schistosoma mansoni sambon in natural standing and running waters on the West Indian islands. Intl. J. Parasitol., 3, 289–297.Google Scholar
  48. Weller, T. H. (1975). The increasing impact of schistosomiasis in a changing global ecology. In: Development of Chemotherapeutic Agents for Parasitic Diseases. ( M. Marois ed.), North Holland, Amsterdam, pp. 21–29.Google Scholar
  49. Wilson, R.A. (1970). Fine structure of the nervous system and specialized nerve endings in the miracidium of Fasciola hepatica. Parasitol., 60, 399–410.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Betty R. Jones
    • 1
  • Steve C. Pan
    • 2
  • Marwan M. Amarin
    • 3
  1. 1.Department of Biology, Parasitology and Electron Microscopy Laboratory and the Atlanta University Center Scanning Electron Microscopy Research LaboratoryMorehouse CollegeAtlantaUSA
  2. 2.Department of Tropical Public HealthHarvard School of Public HealthBostonUSA
  3. 3.Department of BiologyAtlanta UniversityAtlantaUSA

Personalised recommendations