Decomposition of Wood by Brown-Rot Fungi

  • Barbara L. Illman
  • Terry L. Highley


Many different types of organisms deteriorate wood, but the greatest damage is microbial decay caused by fungi (Figures 1 and 2). Fungal decay is by far the most serious type of damage to wood in use, because it can cause structural failure that, at times, is very rapid. It is virtually impossible to accurately assess the monetary loss caused by decay that destroys wood products or impairs their aesthetic qualities because records are rarely kept. Treatments are available that can either prevent or retard the destructive action of decay. Nevertheless, it is estimated that annual losses of over $1 billion in the United States result from fungal deterioration of untreated or inadequately treated wood.


Electron Spin Resonance Electron Spin Resonance Signal Lignin Degradation Middle Lamella Wood Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baechler, R.H. (1959). Improving wood’s durability through chemical modification. Forest Prod. J., 9, 166–171.Google Scholar
  2. Bullock, S., Ashford, A.E., and Willetts, H.J. (1980). The structure and histochemistry of sclerotia of Sclerotinia minor Jagger, II. Histochemistry of extracellular substances and cytoplasmic reserves. Protoplasma, 104, 333–351.CrossRefGoogle Scholar
  3. Cohen, G. (1985). The Fenton reaction. In: Handbook of Methods for Oxygen Radical Research. pp. 55–64 (R.A. Green, ed.), CRC Press, Boca Raton, Florida.Google Scholar
  4. Cowling, E.B. (1961). Comparative biochemistry of the decay of sweet-gum by white-and brown-rot fungi. USDA Tech. Bull., 1258, 75 p.Google Scholar
  5. Cowling, E.B. and Brown, W. (1969). Structurai features of cellulosic materials in relation to enzymatic hydrolysis. In: Cellulases and Their Applications. (G.J. Hajny and E.T. Reese, eds.), Adv. Chem. Ser. 95, 152–187.CrossRefGoogle Scholar
  6. Dowsett, J.A. (1981). Extracellular hyphal sheaths of Dactylaria brochophaga. Mycologia, 73, 1207–1211.CrossRefGoogle Scholar
  7. Eriksson, K.E. (1981). Microbial degradation of cellulose and lignin. Proc. Internat. Symp. on Wood and Pulping Chemistry (Stockholm), 3, 60–65.Google Scholar
  8. Eriksson, K.E. and Goodell, B. (1974). Pleiotropic mutants of the wood-rotting fungus Polyporus adustus lacking cellulase, mannanase and xylase. Can. J. Microbiol., 20, 371–378.CrossRefGoogle Scholar
  9. Evans, R.C., Stempen, H. and Stewart, S.J. (1981). Development of hyphal sheaths in Bipolaris maydis race T. Can. J. Bot., 59, 453–459.CrossRefGoogle Scholar
  10. Foster, R.C. (1981). Mycelial strands of Pinus radiata D. Don: Ultrastructure and histochemistry. New Phytol., 88, 705–712.CrossRefGoogle Scholar
  11. Francis, D.M. and Leightley, L.E. (1983). Extracellular layers of wood decay fungi and copper tolerance. The Inter. Res. Group on Wood Preserv., Document IRG/WP/1180.Google Scholar
  12. Green, F.G., Clausen, C.A., Micales, J.A., Highley, T.L., and Wolter, K.E. (1987). Carbohydrate-degrading complex of the brown-rot fungus Postia placenta: Partial purification of ßl,4-xylanase. Enzyme and Microbial. Technol. (submitted)Google Scholar
  13. Green, N.B., Dickinson, D.J. and Levy, J F. (1980). A biochemical explanation for the observed patterns of fungal decay in timber. The Inter. Res. Group on Wood Preserv., Document IRG/WP/1111.Google Scholar
  14. Haider, K. and Trojanowski, J. (1980). A comparison of the degradation of 14C-labelled DHP and corn stalk lignins by micro-and macrofungi and by bacteria. In: Lignin Biodegradation: Microbiology, Chemistry, and Potential Appl.Google Scholar
  15. Halliwell, G. (1965). Catalytic decomposition of cellulose under biological conditions. Biochem. J., 95, 35–40.Google Scholar
  16. Harvey, P.J., Schoemaker, H.E. and Palmer, J.M (1986). Lignin degradation by wood degrading fungi. The Inter. Res. Group on Wood Preserv., Document IRG/WP/1310.Google Scholar
  17. Herr, D., Baumer, F. and Dellweg, H. (1978). Purification and properties of an extracellular endo-1,4–13-glucanase from Lenzities trabea. Arch. Microbiol., 117, 287–292.CrossRefGoogle Scholar
  18. Highley, T.L. (1970). Decay resistance of four woods treated to destroy thiamine. Phytopathology, 60, 1660–1661.CrossRefGoogle Scholar
  19. Highley, T.L. (1973a). Influence of carbon source on cellulase activity of white-rot and brown-rot fungi. Wood Fiber, 5 (1), 50–58.Google Scholar
  20. Highley, T.L. (1973b). Source of increased decay resistance in sodium hydroxide-and ammonia-treated wood. Phytopathology, 63, 57–61.CrossRefGoogle Scholar
  21. Highley, T.L. (1976). Hemicellulases of white-and brown-rot fungi in relation to host preferences. Mater. and Org.., 11 (1), 33–46.Google Scholar
  22. Highley, T.L. (1977). Requirements for cellulose degradation by a brown-rot fungus. Mater. and Org., 12 (1), 25–36.Google Scholar
  23. Highley, T.L. (1987). Change in chemical components of hardwood and softwood by brown-rot fungi. Mater. and Org., 22 (1), 39–45.Google Scholar
  24. Highley, T.L., Kirk, T.K. and Ibach, R. (1988). Effect of brown-rot fungi on cellulose. In: Biodeterioration Research II. ( G.C. Llewellyn and C.E. O’Rear, eds.), Plenum Press, New York.Google Scholar
  25. Highley, T.L., Murmanis, L.L. and Palmer, J.G. (1983). Electron microscopy of cellulose decomposition by brown-rot fungi. Holzforschung, 37 (6), 271–278.CrossRefGoogle Scholar
  26. Highley, T.L., Murmanis, L.L. and Palmer J.G. (1985). Micromorphology of degradation in western hemlock and sweetgum by the brown-rot fungus Poria placenta. Holzforschung, 39 (2), 73–78.CrossRefGoogle Scholar
  27. Highley, T.L. and Wolter, K.E. (1982). Properties of a carbohydrate-degrading enzyme complex from the brown-rot fungus Poria placenta. Mater. und Org.., 17 (2), 127–134.Google Scholar
  28. Highley, T.L., Wolter, K.E. and Evans, F.J. (1981). Polysaccharide-degrading complex in wood and in liquid media by the brown-rot fungus Poria placenta. Wood and Fiber, 13 (4), 265–274.Google Scholar
  29. Hulme, M.A. and Shields, J.K. (1970). Biological control of decay fungi in wood by competition for nonstructural carbohydrates. Nature, 227 (5255), 300–301.CrossRefGoogle Scholar
  30. Illman, B.L., Meinholtz, D.C. and Highley, T.L. (1988a). Oxygen free radical detection in wood colonized by the brown-rot fungus, Postia placenta. In: Biodeterioration Research II. (G.C. Llewellyn and C.E. O’Rear, eds.), Plenum Press, New York.Google Scholar
  31. Illman, B.L., Meinholtz, D.C. and Highley, T.L. (1988b). Manganese as a Probe of Fungal Decomposition of Wood. In: Biodeterioration Research II. (G.C. Llewellyn and C.E. O’Rear, eds.), Plenum Press, New York.Google Scholar
  32. Illman, B.L. and Highley, T.L. (1988c). Hydrogen peroxide production by wood decay fungi in liquid medium. Phytopathology, 1988 Annual Meeting, ( Abstract accepted).Google Scholar
  33. Ishihara, M., Shimizu, K. and Ishihara, T. (1978). Hemicellulases of brown rotting fungus, Tyromyces palustris, III. Partial purification and mode of action of an extracellular xylanase. Mokuzai Gakkaishi, 24, 108–115.Google Scholar
  34. Jennison, M.W. (1952). Physiology of the wood-rotting fungi. In: Report No. 8 for the Office of Naval Research. 151 p., Microbiology Branch, Syracuse University, Syracuse, New York.Google Scholar
  35. Johnson, B.R. and Chen, G.C. (1983). Occurrence and inhibition of chitin in cell walls of wood-decay fungi. Holzforschung, 37, 255–259.CrossRefGoogle Scholar
  36. Jutte, S.M. and Sachs, I.B. (1976). SEM observations of brown-rot fungus Poria placenta in normal and compression wood of Picea abies. In: Proc. of the Workshop on Plant Science Application. Part IV, pp. 535–542, Scanning Electron Microscopy.Google Scholar
  37. Keilich, G., Bailey, P. and Liese, M. (1970). Enzymatic degradation of cellulose, cellulose derivatives, and hemicelluloses in relation to the fungal decay of. Wood Sci. Technol., 4, 273–283.CrossRefGoogle Scholar
  38. King, N.J. (1966). The extracellular enzymes of Coniophora cerebella. Biochem. J., 100, 784–792.Google Scholar
  39. King, N.J. (1968). Degradation of holocellulose by an enzyme preparation from a wood-destroying fungus. Nature, 218 (5147), 1173–1174.CrossRefGoogle Scholar
  40. Kirk, T.K. (1975). Effects of the brown-rot fungus, Lenzites trabea, on lignin in spruce wood. Holzforschung, 29, 99–107.CrossRefGoogle Scholar
  41. Kirk, T.K. and Adler, E. (1970). Methoxyl deficient structural elements in lignin of sweetgum decayed by a brown-rot fungus. Acta Chem. Scand., 24, 3379–3390.CrossRefGoogle Scholar
  42. Kirk, T.K. and Cowling, E.B. (1984). Biological decomposition of solid wood. In: Chemistry of Solid Wood, Advances in Chemistry Series 207. pp. 455–487 (R. M. Rowell, ed.), Am. Chem. Soc. Press, Washington, D.C.CrossRefGoogle Scholar
  43. Kirk, T.K. and Chang, H. (1975). Decomposition of lignin by white-rot fungi. H. Characterization of heavily degraded lignins from decayed spruce. Holzforschung, 29, 56–64.CrossRefGoogle Scholar
  44. Kirk, T.K. and Highley, T.L. (1973). Quantitative changes in structural components of conifer woods during decay by white-and brown-rot fungi. Phytopathology, 63, 1338–1342.CrossRefGoogle Scholar
  45. Kirk, T.K., Larsson, S. and Miksche, G.E. (1970). Aromatic hydroxyl-ation resulting from attack of lignin by a brown-rot fungus. Acta Chem. Scand., 24, 1470.CrossRefGoogle Scholar
  46. Koenigs, J.W. (1972). Production of extracellular hydrogen peroxide and peroxidase by wood-rotting fungi. Phytopathology, 62, 100–110.CrossRefGoogle Scholar
  47. Koenigs, J.W. (1974). Hydrogen peroxide and iron: A proposed system for decomposition of wood by brown-rot basidiomycetes. Wood Fiber, 6 (1), 66–79.Google Scholar
  48. Larsen, M.J., Jurgensen, M.F. and Harvey, A.E. (1978). N2 fixation associated with wood decayed by some fungi in Western Montana, Can. J. For. Res., 8, 341–345.CrossRefGoogle Scholar
  49. Levi, M.P., Merrill, W. and Cowling, E.B. (1968). Role of nitrogen in wood deterioration. VI. Mycelial fractions and model nitrogen compounds as substrates for growth of Polyporus versicolor and other wooa-destroying and wood-inhabiting fungi. Phytopatholology, 58 (5), 626–634.Google Scholar
  50. Leightley, L.E. and Eaton, R.A. (1980). Micromorphology of wood decay by marine microorganisms. In: Biodeterioration: The Proc. Fourth Inter Biodeterioration Symp. (T. A. Oxley, G. Becker and D. Allsopp, eds.), Pitman Publ. Ltd., Berlin, London.Google Scholar
  51. Liese, W. (1970). Ultrastructural aspects of woody tissue disintegration. Ann. Rev. Phytopathol., 231–258.Google Scholar
  52. Liese, W. and Schmid, R. (1966). Untersuchungen uber den Zellwandabbau von Nadelholz durch Trametes pini. Holz als Roh- und werkstoff, 24, 454–460.CrossRefGoogle Scholar
  53. Messner, K. and Stachelberger, H. (1984). Transmission electron microscope observations of brown-rot fungi caused by Fomitopsis pinicola with respect to osmiophilic particles. Trans. Br. Mycol. Soc., 83 (11), 113–130.CrossRefGoogle Scholar
  54. Merrill, W. and Cowling, E.B. (1966). Rate of nitrogen in wood deterioration: Amounts and distribution of nitrogen in tree stems. Can. J. Bot., 44, 1555–1580.CrossRefGoogle Scholar
  55. Moore-Landecker, E. (1981). Histochemical observations on apothecia, permanently vegetative hyphae, and sclerotia of Pyronema domesticum with special reference to light. Can. J. Bot., 59, 1726–1737.CrossRefGoogle Scholar
  56. Murray, G.M. and Maxwell, D.P. (1975). Penetration of Zea mays by Helminthosporium carbonum. Can. J. Bot., 53, 2872–2883.CrossRefGoogle Scholar
  57. Palmer, J.G., Murmanis, L. and Highley, T.L. (1983a). Visualization of hyphal sheath in wood-decay Hymenomycetes. I. Brown-rotters. Mycologia, 75, 995–1004.CrossRefGoogle Scholar
  58. Palmer, J.G., Murmanis, L. and Highley, T.L. (1983b). Visualization of hyphal sheath in wood-decay Hymenomycetes. II. White-rotters. Mycologia, 75, 1005–1010.CrossRefGoogle Scholar
  59. Phillip, B., Dan, D.C. and Fink, H.P. (1981). Acid and enzymatic hydrolysis of cellulose in relation to its physical structure. Proc. Inter. Symp. on Wood and Pulping Chem. (Stockholm), 4, 79–83.Google Scholar
  60. Proctor, P. (1941). Penetration of the walls of wood cells by the hyphae of wood-destroying fungi. In: Bulletin No. 47, Yale Univ. School of Forestry.Google Scholar
  61. Rowland, S.P. and Roberts, E.J. (1972). The nature of accessible surfaces in the microstructure of cotton cellulose. J. Polym. Sci. (Part A-I), 10, 2447–2461.Google Scholar
  62. Rowell, R.M. (1984). Penetration and reactivity of cell wall components. In: Chemistry of Solid Wood, Advances in Chemistry Series 207, ( Rowell, R.M. ed.), 175–209, Am. Chem. Soc. Press, Washington, D.C.CrossRefGoogle Scholar
  63. Saito, I. (1974). Utilization of ß-glucans in germinating sclerotia of Sclerotinia sclerotium (Lib.) de Bary. Ann. Phytopathol. Soc. Japan, 40, 372–374.CrossRefGoogle Scholar
  64. Schmid, R. and Liese, W. (1965). Zur Aussenstruktur der Hyphen von Blauepilzen. Phytopathologische Zeitschrift, 54, 175–284.CrossRefGoogle Scholar
  65. Schmidt, C.J., Whitten, B.K. and Nicholas, D.D. (1981). A proposed role for oxalic acid in non-enzymatic wood decay by brown-rot fungi. Proc. Am. Wood Preserv. Assoc., 77, 157–164.Google Scholar
  66. Sutter, P.H., Jones, E.B.G. and Walchi, O. (1983). The mechanisms of copper tolerance in Poria placenta (Fr.) Cke. and Poria vaillantii (Pers.) Fr. Mater. and Org., 18 (4), 241–262.Google Scholar
  67. Takao, S. (1965). Organic acid production by basidiomycetes. Appl. Microbiol., 13, 732–737.Google Scholar
  68. Van der Valk, P., Marchant, R. and Wessels, G.H. (1977). Ultra-structural localization of polysaccharides in the wall and septum of the Basidiomycete Schizophyllum commune. Exp. Mycol., 1, 69–82.CrossRefGoogle Scholar
  69. Wilcox, W.W. (1970). Anatomical changes in wood cell walls attacked by fungi and bacteria. The Botanical Review, 36, 1–28.CrossRefGoogle Scholar
  70. Young, H.E. and Carpenter, P.N. (1967). Weight, nutrient element, and productivity studies of seedlings and saplings of eight tree species in natural ecosystems. Me. Agric. Exp. Sta. Tech. Bull. 28.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Barbara L. Illman
    • 1
  • Terry L. Highley
    • 1
  1. 1.Forest Service, Forest Products LaboratoryUSDAMadisonUSA

Personalised recommendations