Contact Angles as an Analytical Tool for Investigating Two-Phase Interactions with Biological Surfaces: A Review

  • John F. Boyce
  • Donald E. Brooks


The contact angle approach offers several advantages for the interpretation of aqueous two-phase partition behaviour, and as an implement for investigating the physico-chemical nature of the cell surface. The development and evolution of the technique, and its applications are reviewed here.


Contact Angle Interfacial Tension Interfacial Energy Phorbol Myristate Acetate Interfacial Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Young, Philos. Trans. R. Soc, London 95:65 (1805)CrossRefGoogle Scholar
  2. 2.
    P.-Å. Albertsson, in: “Partition of Cell Particles and Macromolecules,” 3rd ed., Wiley-Interscience, New York (1986)Google Scholar
  3. 3.
    D.E. Brooks, K.A. Sharp and D. Fisher, Theoretical aspects of partitioning, in: “Partitioning in Aqueous Two Phase Systems,” H. Walter, D.E. Brooks and D. Fisher, eds., Academic Press, Orlando (1985)Google Scholar
  4. 4.
    K.A. Sharp, Theoretical and experimental studies on erythrocyte partition in aqueous polymer two-phase systems, Ph.D. Thesis, University of British Columbia, Vancouver, 1985Google Scholar
  5. 5.
    J.F. Boyce, S. Schürch and D.J.L. McIver, Interfacial tensions in healthy and atherosclerotic rabbit aortae: Higher values on lesion surfaces, Atherosclerosis 37:361 (1980)PubMedCrossRefGoogle Scholar
  6. 6.
    A.W. Neumann, R.J. Good, C.J. Hope and M. Sejpal, An equation of state approach to determine surface tensions of low energy solids from contact angles, J. Colloid Interface Science 49:291 (1974)CrossRefGoogle Scholar
  7. 7.
    D.F. Gerson, Cell surface energy, contact angles and phase partition, I. Lymphocytic cell lines in biphasic aqueous mixtures, Biochim. Biophys. Acta 602:269 (1980)PubMedCrossRefGoogle Scholar
  8. 8.
    D.F. Gerson and J. Akit, Cell surface energy, contact angles and phase partition. II Bacterial cells in biphasic aqueous mixtures, Biochim. Biophys. Acta 602:281 (1980)PubMedCrossRefGoogle Scholar
  9. 9.
    C.J. Van Oss, C.F. Gillman and A.W. Neumann, “Phagocytic Engulfment and Cell Adhesiveness as Cellular Surface Phenomena,” Marcel Dekker, New York (1975)Google Scholar
  10. 10.
    D.J.L. McIver and S. Schürch, Interfacial free energies of intact and reconstituted erythrocyte surfaces — implications for biological adhesion, Biochim. Biophys. Acta 691:52 (1982)PubMedCrossRefGoogle Scholar
  11. 11.
    D.F. Gerson, Interfacial free energies of cells and polymers in aqueous media, in: “Physiochemical Aspects of Polymer Surfaces,” Vol. 1, K.L. Mittel, ed., Plenum, New York (1983)Google Scholar
  12. 12.
    S. Schüurch, D.F. Gerson and D.J.L. McIver, Determination of cell medium interfacial tensions from contact angles in aqueous polymer systems, Biochim. Biophys. Acta 640:557 (1981)CrossRefGoogle Scholar
  13. 13.
    H.W. Fox and W.A. Zisman, The spreading of liquids on low energy surfaces. II Modified tetrafluorethylene polymers, J. Colloid Sci. 7:109 (1952)CrossRefGoogle Scholar
  14. 14.
    R.J. Good and L.A. Girifalco, A theory for estimation of surface and interfacial energies. III Estimation of surface energies of solids from contact angle data, J. Phys. Chem. 64:561 (1960)CrossRefGoogle Scholar
  15. 15.
    S.A. Johnstone, S. Schürch, D.J.L. McIver, E.A. Jacobson and E.R. Tustanoff, Membrane glycoprotein and surface free energy changes in hypoxic fibroblast cells, Biochim. Biophys. Acta 815:159 (1985)PubMedCrossRefGoogle Scholar
  16. 16.
    N.A.M. Paterson, D.J.L. McIver and S. Schüurch, Zymosan enhances leukotriene D4 metabolism by porcine alveolar macrophages, Immunology 56:153 (1985)PubMedGoogle Scholar
  17. 17.
    N.A.M. Paterson, D.J.L. McIver and S. Schürch, The effect of leukotrienes on porcine alveolar macrophage function, Prostaglandins. Leukotrienes Med. 25:147 (1986)CrossRefGoogle Scholar
  18. 18.
    D.J.L. McIver and S. Schürch, Polymer mixing and the thermodynamics of cell adhesion at fluid interfaces, J. Adhesion 22:253 (1987)CrossRefGoogle Scholar
  19. 19.
    J.F. Boyce, P.C. Wong, S. Schürch and M.R. Roach, Rabbit arterial endothelium and subendothelium: A change in interfacial free energy that may promote initial platelet adhesion, Circ. Res. 53:372 (1983)PubMedGoogle Scholar
  20. 20.
    J.F. Boyce, R.B. Podesta, S. Schürch and M.R. Roach, Rabbit bladder-surface mucin: A thermodynamic mechanism for inhibiting bacterial adhesion, Urol. Res. 11:93 (1983)PubMedCrossRefGoogle Scholar
  21. 21.
    B.N. Youens, A.W. Foulds, W.D. Cooper and D. Fisher, Interfacial properties of cells partitioning in aqueous polymer two-phase systems, Biochem. Soc. Trans. 14:751 (1986)Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • John F. Boyce
    • 1
  • Donald E. Brooks
    • 1
    • 2
  1. 1.Department of PathologyThe University of British ColumbiaVancouverCanada
  2. 2.Department of ChemistryThe University of British ColumbiaVancouverCanada

Personalised recommendations