Affinity Partitioning of Enzymes

  • Göte Johansson


Affinity partitioning is used as a collective name for extraction processes where one (or several) ligands selectively influence the partition of solutes (e.g. proteins) within aqueous two-phase systems. The restriction of the affinity ligand to one phase is generally obtained by covalent attachment of ligand to the dominating polymer of this phase.


DEAE Cellulose Affinity Ligand Phosphoglycerate Mutase Aqueous Biphasic System Bulk Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Takerkart, E. Segard and M. Monsigny, Partition of trypsin in two-phase systems containing a diamino-α-ω-diphenylcarbamyl poly(entylene glycol) as competitive inhibitor of trypsin, FEBS Lett. 42:218 (1974)PubMedCrossRefGoogle Scholar
  2. 2.
    S.D. Flanagan and S.H. Barondes, Affinity partitioning — a method for purification of proteins using specific polymer-ligands in aqueous polymer two-phase systems, J. Biol. Chem. 250:1484 (1975)PubMedGoogle Scholar
  3. 3.
    V.P. Shanbhag and G. Johansson, Specific extraction of human serum albumin by partition in aqueous biphasic systems containing poly(ethylene glycol) bound ligand, Biochem. Biophys. Res. Commun. 61:1141 (1974)PubMedCrossRefGoogle Scholar
  4. 4.
    G. Johansson, M. Andersson and H.-E. Åkerlund, Countercurrent distribution of yeast enzymes with polymer-bound triazine dye affinity ligands, J. Chromatogr. 298:483 (1984)CrossRefGoogle Scholar
  5. 5.
    C. Erlanson-Albertsson, The importance of tyrosine residues in pancreatic colipase for its activity, FEBS Lett. 117:295 (1980)PubMedCrossRefGoogle Scholar
  6. 6.
    M.R. Kula, G. Johansson and A.F. Bückmann, Large-scale isolation of enzymes, Biochem. Soc. Transact. 7:1 (1979)Google Scholar
  7. 7.
    A. Cordes and M-R Kula, Process design for large-scale purification of formate dehydrogenase from Candida boidinii by affinity partition, J. Chromatogr. 376:375 (1986)CrossRefGoogle Scholar
  8. 8.
    H.K. Kroner, A. Cordes, A. Schelper, M. Morr, A.F. Bückmann and M.R. Kula, Affinity partition studied with glucose-6-phosphate dehydrogenase in aqueous two-phase systems in response to triazine dyes, in: T.C.J. Gribnau, J. Visser and R.J.F. Nivard, eds., Affinity chromatography and related techniques, Elsevier, Amsterdam (1982)Google Scholar
  9. 9.
    G. Kopperschläger and G. Lorenz, Interaction of yeast glucose 6-phosphate dehydrogenase with diverse triazine dyes: A study by means of affinity partitioning, Biomed. Biochim. Acta 44:517 (1985)PubMedGoogle Scholar
  10. 10.
    G. Johansson and M. Joelsson, Partial purification of glucose 6-phosphate dehydrogenase from baker’s yeast by affinity partitioning using polymer-bound triazine dyes, Enzyme Microb. Technol. 7:629 (1985)CrossRefGoogle Scholar
  11. 11.
    G. Johansson and M. Andersson, Parameters determining affinity partitioning of yeast enzymes using polymer-bound triazine dye ligands, J. Chromatogr. 303:39 (1984)PubMedCrossRefGoogle Scholar
  12. 12.
    G. Kopperschläger, G. Lorenz and E. Usbeck, Affinity partitioning in an aqueous two-phase system to the investigation of triazine dye — enzyme interactions, J. Chromatogr. 259:97 (1983)PubMedCrossRefGoogle Scholar
  13. 13.
    G. Johansson and M. Andersson, Liquid-liquid extraction of glycolytic enzymes from baker’s yeast using triazine dye ligands, J. Chromatogr. 291:175 (1984)CrossRefGoogle Scholar
  14. 14.
    F. Tjerneld, G. Johansson and M. Joelsson, Affinity liquid-liquid extraction of lactate dehydrogenase in large scale, Biotechnol. Bioeng., 30:809 (1987)PubMedCrossRefGoogle Scholar
  15. 15.
    G. Johansson and M. Joelsson, Liquid-liquid extraction of lactate dehydrogenase from muscle using polymer-bound triazine dyes, Applied Biochem. Biotechnol. 13:15 (1986)CrossRefGoogle Scholar
  16. 16.
    M. Joelsson and G. Johansson, Sequential liquid-liquid extraction of some enzymes from porcine muscle using polymer-bound triazine dyes, Enzyme Microb. Technol. 9:233 (1987)CrossRefGoogle Scholar
  17. 17.
    J. Schiemann and G. Kopperschläger, Binding of higher plant NADH-dependent nitrate reductase to different triazine dyes, Plant Sci. Lett. 36:205 (1985)Google Scholar
  18. 18.
    P. Hubert, E. Dellacherie, J. Neel and E-E Baulieu, Affinity partitioning of steroid-binding proteins. The use of polyethylene oxide-bound estradiol for purifying Δ5→63-oxosteroid isomerase, FEBS Lett. 65:169 (1976)PubMedCrossRefGoogle Scholar
  19. 19.
    G. Johansson, G. Kopperschläger and P-Å Albertsson, Affinity partitioning of phosphofructokinase from baker’s yeast using polymer-bound Cibacron blue F3G-A, Eur. J. Biochem. 131:589 (1983)PubMedCrossRefGoogle Scholar
  20. 20.
    G. Kopperschläger and G. Johansson, Affinity partitioning with polymer-bound Cibacron blue F3G-A for rapid large-scale purification of phosphofructokinase from baker’s yeast, Anal. Biochem. 124:117 (1982)PubMedCrossRefGoogle Scholar
  21. 21.
    P.-Å. Albertsson, Partition of Cell Particles and Macromolecules, 3 ed., Wiley, New York (1986)Google Scholar
  22. 22.
    G. Johansson and M. Joelsson, Affinity partitioning of enzymes using dextran-bound Procion yellow HE-3G: influence of dye-ligand density, J. Chromatrogr. 393:195 (1987)CrossRefGoogle Scholar
  23. 23.
    G. Johansson and G. Kopperschläger, Effects of organic solvents on the partitioning of enzymes in aqueous two-phase systems J. Chromatogr. 388:295 (1987)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Göte Johansson
    • 1
  1. 1.Department of Biochemistry Chemical CenterUniversity of LundLundSweden

Personalised recommendations