Skip to main content

Use of Phase Partitioning in Multidimensional Subcellular Fractionation

  • Chapter
Separations Using Aqueous Phase Systems

Abstract

Conventional subcellular fractionation procedures incorporate two separation dimensions, one based on membrane sedimentation coefficient, the other on equilibrium density. Questions about the homogeneity of samples obtained with these procedures have been addressed with additional separations based on manipulation of membrane density or on partitioning in dextran-poly(ethylene glycol) two-phase systems. In some cases it has proven useful to employ a total of 4 separation dimensions, i.e. sedimentation, equilibrium density in 2 differently designed density gradients, and phase partitioning. In other cases, parallel third dimensions analyses in two-phase systems with different pH values have been used to delineate the multiplicity of populations present in conventional subcellular samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. DeDuve, Principles of tissue fractionation, J. Theor. Biol. 6:33 (1964)

    Article  CAS  Google Scholar 

  2. N.G. Anderson, W.W. Harris, A.A. Barber, C.T. Rankin and E.L. Chandler, “Separation of Subcellular Components by Combined Rate and Isopycnic Zonal Centrifugation,” National Cancer Institute Monograph 26, U.S. Government Printing Office, Washington, D.C. (1966)

    Google Scholar 

  3. G. Saccomani, H.B. Stewart, D. Shaw, M. Lewin and G. Sachs, Characterisation of gastric mucosal membranes. IX. Fractionation by zonal centrifugation and free flow electrophoresis technique, Biochim. Biophys. Acta 456:311 (1977)

    Google Scholar 

  4. A.K. Mircheff, Empirical strategy for analytical fractionation of epithelial cells, Am. J. Physiol. 244:G347 (1983)

    PubMed  CAS  Google Scholar 

  5. A.K. Mircheff and C.C. Lu, A map of membrane populations isolated from rat exorbital gland, Am. J. Physiol. 247:G651 (1984)

    PubMed  CAS  Google Scholar 

  6. A.K. Mircheff, D.J. Ahnen, A. Islam, N.A. Santiago and G.M. Gray, Complex subcellular distributions of enzymatic markers in intestinal epithelial cells, J. Membrane Biol. 83:95 (1985)

    Article  CAS  Google Scholar 

  7. D.J. Ahnen, A.K. Mircheff, N.A. Santiago, C. Yoshioka and G.M. Gray, Intestinal surface aminooligopeptidase. Distinct molecular forms during assembly on intracellular membranes in vivo, J. Biol. Chem. 258:5960 (1983)

    PubMed  CAS  Google Scholar 

  8. C.N. Conteas, A.A. McDonough, T.R. Kozlowski, C.B. Hensley, R.L. Wood and A.K. Mircheff, Mapping subcellular distribution of Na+-K+-ATPase in rat parotid gland, Am. J. Physiol. 250:C430 (1986)

    PubMed  CAS  Google Scholar 

  9. R.W. Lambert, M.E. Bradley and A.K. Mircheff, Sodium/proton and chloride/bicarbonate antiporters in rat lacrimal gland basal-lateral membranes, Invest. Ophthalmol. Vis. Sci. 28s:156 (1987)

    Google Scholar 

  10. C.L. Peters, M.E. Bradley, S.C. Yiu and A.K. Mircheff, Muscarinic receptors in cell surface and intracellular membranes of rat exorbital lacrimal gland, Invest. Ophthalmol. Vis. Sci. 27s:26 (1986)

    Google Scholar 

  11. S. Grinstein and A. Rothstein, Mechanisms of regulation of the Na+/H+ exchanger, J. Membrane Biol. 90:1 (1986)

    Article  CAS  Google Scholar 

  12. H.E. Ives, V.J. Yee and D.J. Warnock, Asymmetric distribution of the Na+/H+ in renal proximal tubule epithelial cells, J. Biol. Chem. 258:13513 (1983)

    PubMed  CAS  Google Scholar 

  13. A.K. Mircheff, H.E. Ives, V.J. Yee and D.G. Warnock, Na+/H+ antiporter in membrane populations resolved from a renal brush border vesicle preparation, Am. J. Physiol. 246:F843 (1984)

    Google Scholar 

  14. E.J.J.M. van Corven, C.H. van Os and A.K. Mircheff, Subcellular distribution of ATP-dependent calcium transport in rat duodenal epithelium, Biochim. Biophys. Acta 861:267 (1986)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Mircheff, A.K., Bradley, M.E., Hensley, C.B., van Corven, E.J.J.M., Yiu, S.C., Lambert, R.W. (1989). Use of Phase Partitioning in Multidimensional Subcellular Fractionation. In: Fisher, D., Sutherland, I.A. (eds) Separations Using Aqueous Phase Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5667-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5667-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5669-1

  • Online ISBN: 978-1-4684-5667-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics