Advertisement

Use of Phase Partitioning in Multidimensional Subcellular Fractionation

  • Austin K. Mircheff
  • Michael E. Bradley
  • Charles B. Hensley
  • Emile J. J. M. van Corven
  • Samuel C. Yiu
  • Ross W. Lambert

Abstract

Conventional subcellular fractionation procedures incorporate two separation dimensions, one based on membrane sedimentation coefficient, the other on equilibrium density. Questions about the homogeneity of samples obtained with these procedures have been addressed with additional separations based on manipulation of membrane density or on partitioning in dextran-poly(ethylene glycol) two-phase systems. In some cases it has proven useful to employ a total of 4 separation dimensions, i.e. sedimentation, equilibrium density in 2 differently designed density gradients, and phase partitioning. In other cases, parallel third dimensions analyses in two-phase systems with different pH values have been used to delineate the multiplicity of populations present in conventional subcellular samples.

Keywords

Acid Phosphatase Apical Membrane Lacrimal Gland Separation Dimension Phase Partitioning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. DeDuve, Principles of tissue fractionation, J. Theor. Biol. 6:33 (1964)CrossRefGoogle Scholar
  2. 2.
    N.G. Anderson, W.W. Harris, A.A. Barber, C.T. Rankin and E.L. Chandler, “Separation of Subcellular Components by Combined Rate and Isopycnic Zonal Centrifugation,” National Cancer Institute Monograph 26, U.S. Government Printing Office, Washington, D.C. (1966)Google Scholar
  3. 3.
    G. Saccomani, H.B. Stewart, D. Shaw, M. Lewin and G. Sachs, Characterisation of gastric mucosal membranes. IX. Fractionation by zonal centrifugation and free flow electrophoresis technique, Biochim. Biophys. Acta 456:311 (1977)Google Scholar
  4. 4.
    A.K. Mircheff, Empirical strategy for analytical fractionation of epithelial cells, Am. J. Physiol. 244:G347 (1983)PubMedGoogle Scholar
  5. 5.
    A.K. Mircheff and C.C. Lu, A map of membrane populations isolated from rat exorbital gland, Am. J. Physiol. 247:G651 (1984)PubMedGoogle Scholar
  6. 6.
    A.K. Mircheff, D.J. Ahnen, A. Islam, N.A. Santiago and G.M. Gray, Complex subcellular distributions of enzymatic markers in intestinal epithelial cells, J. Membrane Biol. 83:95 (1985)CrossRefGoogle Scholar
  7. 7.
    D.J. Ahnen, A.K. Mircheff, N.A. Santiago, C. Yoshioka and G.M. Gray, Intestinal surface aminooligopeptidase. Distinct molecular forms during assembly on intracellular membranes in vivo, J. Biol. Chem. 258:5960 (1983)PubMedGoogle Scholar
  8. 8.
    C.N. Conteas, A.A. McDonough, T.R. Kozlowski, C.B. Hensley, R.L. Wood and A.K. Mircheff, Mapping subcellular distribution of Na+-K+-ATPase in rat parotid gland, Am. J. Physiol. 250:C430 (1986)PubMedGoogle Scholar
  9. 9.
    R.W. Lambert, M.E. Bradley and A.K. Mircheff, Sodium/proton and chloride/bicarbonate antiporters in rat lacrimal gland basal-lateral membranes, Invest. Ophthalmol. Vis. Sci. 28s:156 (1987)Google Scholar
  10. 10.
    C.L. Peters, M.E. Bradley, S.C. Yiu and A.K. Mircheff, Muscarinic receptors in cell surface and intracellular membranes of rat exorbital lacrimal gland, Invest. Ophthalmol. Vis. Sci. 27s:26 (1986)Google Scholar
  11. 11.
    S. Grinstein and A. Rothstein, Mechanisms of regulation of the Na+/H+ exchanger, J. Membrane Biol. 90:1 (1986)CrossRefGoogle Scholar
  12. 12.
    H.E. Ives, V.J. Yee and D.J. Warnock, Asymmetric distribution of the Na+/H+ in renal proximal tubule epithelial cells, J. Biol. Chem. 258:13513 (1983)PubMedGoogle Scholar
  13. 13.
    A.K. Mircheff, H.E. Ives, V.J. Yee and D.G. Warnock, Na+/H+ antiporter in membrane populations resolved from a renal brush border vesicle preparation, Am. J. Physiol. 246:F843 (1984)Google Scholar
  14. 14.
    E.J.J.M. van Corven, C.H. van Os and A.K. Mircheff, Subcellular distribution of ATP-dependent calcium transport in rat duodenal epithelium, Biochim. Biophys. Acta 861:267 (1986)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Austin K. Mircheff
    • 1
  • Michael E. Bradley
    • 1
  • Charles B. Hensley
    • 1
  • Emile J. J. M. van Corven
    • 1
  • Samuel C. Yiu
    • 1
  • Ross W. Lambert
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of Southern California School of MedicineLos AngelesUSA

Personalised recommendations