Advertisement

Transcriptional Control by Retroviral LTR Regions

  • Niels Ole Kjeldgaard
  • Allan J. Bækgaard
  • Hong Yan Dai
  • Michael Etzerodt
  • Poul Jørgensen
  • Steen Lovmand
  • Henrik Steen Olsen
  • Finn Skou Pedersen
Part of the NATO ASI Series book series (NATO ASI, volume 169)

Abstract

Murine leukemia viruses represent a polymorphic group of retroviruses. Individual isolates differ in species and tissue tropism and in their specificity and potency of pathogenic properties. Some viruses induce lymphomas with high incidence and a latency period of a few months when injected into newborn mice of various inbred strains, whereas others show a weaker and less specific pathogenicity. The pathogenic effects of these weaker viruses include various lymphomas and leukemias as well as neoplastic and non-neoplastic abnormalities in bone tissues. Recombination mapping between thymomagenic and weakly leukemogenic viruses has localized a major determinant of the oncogenic potency to the long terminal repeat (LTR) region of the viruses, (DesGroseillers et al., 1983; DesGroseiller and Jolicoeur, 1984; Lenz et al., 1984). Recombination mapping between viruses that yield thymic and erythroid leukemias has also localized the determinants for tissue specificity to the LTR region, (Chatis et al., 1983, 1984; Ishimoto et al., 1985; Vogt et al., 1985). The LTR regions contain sequences necessary for the initiation and termination of retroviral transcription including promotor elements, termination signals and enhancers. Mapping studies of the more potent MuLVs point to the transcriptional control region containing an enhancer structure as a disease determinant, (Chatis et al., 1984; Ishimoto et al., 1985; Bösze et al., 1986, (MoMuLV, Friend MuLv); Des Groseillers and Jolicoeur, 1984, (GrossA); Lenz et al., 1984; Celander and Haseltine, 1984, (SL3 - 3)).

Keywords

Long Terminal Repeat Murine Leukemia Virus Repeat Structure Chloramphenicol Acetyl Transferase Long Terminal Repeat Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bösze, Z., Thiesen, H-J. and Charnay, P., 1986, A transcriptional enhancer with specificity for erythroid cells is located in the long terminal repeat of Friend murine leukemia virus, EMBO J., 7:1615–1623.Google Scholar
  2. Celander, D. and Haseltine, W.A., 1984, Tissue-specific transcription preference as a determinant of cell tropism and leukaemogenic potential of murine retroviruses, Nature (London) 312:159–163.CrossRefGoogle Scholar
  3. Celander, D. and Haseltine, W.A., 1987, Glucocorticoid regulation of murine leukemia virus transription elements is specified by determinants within the viral enhancer region, J. Virol., 61, 269–275.PubMedGoogle Scholar
  4. Chatis, P.A., Holland, C.A., Hartley, J.W., Rowe, W.P. and Hopkins, N., 1983, Role for the 3′ end of the genome in determining disease specificity for Friend and Moloney murine leukemia viruses, Proc. Natl. Acad. Sci. USA, 80:4408–4411.PubMedCrossRefGoogle Scholar
  5. Chatis, P.A., Holland, C.A., Silver, J. Frederickson, T.N., Hopkins, N. and Hartley, J.W., 1984, A 3′ end fragment encompassing the transcriptional enhancers of nondefective Friend virus confers erythroleukemogenicity on Moloney leukemia virus, J. Virol. 52:248–254.PubMedGoogle Scholar
  6. DesGroseillers, L. and Jolicoeur, P., 1984, The tandem repeats within the long terminal repeat of murine leukemia viruses are the primary determinant of their leukemagenic potential, J. Virol., 52:945–952.PubMedGoogle Scholar
  7. DesGroseillers, L., Rassart, E. and Jolicoeur, P., 1983, Thymotropism of murine leukemia virus is conferred by its long terminal repeat, Proc. Natl. Acad. Sci. USA, 80:4203–4207.PubMedCrossRefGoogle Scholar
  8. Etzerodt, M., Mikkelsen, T., Pedersen, F.S., Kjeldgaard, N.O. and Jørgensen, P., 1984, The nucleotide sequence of the Akv murine leukemia virus genome, Virology, 134:196–207.PubMedCrossRefGoogle Scholar
  9. Gorman, C., 1985, High efficiency gene transfer into mammalian cells, in “DNA cloning”, D.M. Glover ed., IRL Press, Oxford.Google Scholar
  10. Graham, F.L., van der Eb, A.J., 1973, A new technique for the assay of infectivity of human adenovirus 5 DNA, Virology, 52:456–467.PubMedCrossRefGoogle Scholar
  11. Grosschedl, R. and Baltimore D., 1985, Cell-type specificity of immunoglobulin gene expression is regulated by at least three DNA sequence elements, Cell, 41:885–897.PubMedCrossRefGoogle Scholar
  12. Hallberg, B. and Grundström, T., 1988, Tissue specific sequence motifs in the enhancer of the leukaemogenic mouse retrovirus SL3-3, Nucl. Acid Res., 16:5927–5944.CrossRefGoogle Scholar
  13. Ishimoto, A., Adachi, A., Sakai, K. and Matsuyama, M., 1985, Long terminal repeat of Friend-MCF virus contains the sequence responsible for erythroid leukemia. Virology, 141:30–42.PubMedCrossRefGoogle Scholar
  14. Johnson, P.F., Landschulz, W.A., Graves, B.J. and McKnight, S.L., 1987, Identification of a rat liver nuclear protein that binds to the enhancer core element of three animal viruses, Genes and Devel., 1:133–146.CrossRefGoogle Scholar
  15. Laimins, L.A., Gruss, P., Pozzatti, R. and Khoury, G., 1984, Characterization of enhancer elements in the long terminal repeat of Moloney murine sarcoma virus, J. Virol., 49:183–189.PubMedGoogle Scholar
  16. Leib-Mösch, C., Schmidt, J., Etzerodt, M., Pedersen, F.S., Hehlmann, R. and Erfle, V., 1986, Oncogenic retrovirus from spontaneous murine osteomas, II. Molecular cloning and genomic characterization, Virology, 150:96–150.PubMedCrossRefGoogle Scholar
  17. Lenz, J., Crowther, R.L., Straceski, A. and Haseltine, W.A., 1982, Nucleotide sequence of the Akv env gene, J. Virol, 42:519–529.PubMedGoogle Scholar
  18. Lenz, J., Celander, D., Crowther, R.L., Patarca, R., Perkins, D.W. and Haseltine, W.A., 1984, Determination of the leukemogenicity of a murine retrovirus by sequences within the long terminal repeat, Nature (London) 295:467–470.CrossRefGoogle Scholar
  19. Miksicek, R., Heber, A., Schmid, W., Danesch, U., Posseckert, G., Beato, M. and Schutz, G., 1986, Glucocorticoid responsiveness of the transcriptional enhancer of Moloney murine sarcoma virus, Cell, 46:283–290.PubMedCrossRefGoogle Scholar
  20. Nagata, K., Guggenheimer, R.A., Enomoto, T., Lichy, J.H. and Hurwitz, J., 1982, Adenovirus DNA replication in vitro: Identification of a host factor that stimulates synthesis of the preterminal protein-cCMP complex, Proc. Natl. Acad. Sci. USA, 79:6438–6442.PubMedCrossRefGoogle Scholar
  21. Pedersen, F.S., Buchhagen, D.L., Chen, C.Y., Hays, E.F. and Haeltine, W.A., 1980, Characterization of virus produced by a lymphoma induced by inoculation of MCF 247 virus, J. Virol., 35:211–218.PubMedGoogle Scholar
  22. Pedersen, F.S., Crowther, R.L., Tenney, D.Y., Reimold, A. and Haseltine, W.A., 1981, Novel leukemogenic retroviruses isolated from a tumor cell line derived from a spontaneous AKR tumour, Nature (London), 292:167–170.CrossRefGoogle Scholar
  23. Pedersen, F.S., Etzerodt, M., Lovmand, S., Dai, H.Y., Bækgaard, A.J., Sørensen, J., Jørgensen, P., Kjeldgaard, N.O., Schmidt, J., Leib-Mösch, C., Luz, A. and Erfle, V., 1987, Transcriptional control and oncogenicity of murine leukemia viruses, in “Viral Carcinogenesis”, N.O. Kjeldgaard and J. Forchhammer, eds, Munksgaard, Copenhagen.Google Scholar
  24. Quinn, J.P., Holbrook, N. and Levens, D., 1987, Binding of a cellular protein to Gibbon ape leukemia virus enhancer, Mol. Cell. Biol., 7:2735–2744.PubMedGoogle Scholar
  25. Rosen, C.A., Haseltine, W.A., Lenz, J., Ruprecht, R. and Cloyd, M.W., 1985, Tissue selectivity of murine leukemia virus infection is determined by long terminal repeat sequences, J. Virol, 55:862–866.PubMedGoogle Scholar
  26. Schaffner, G., Schirm, S., Müller-Baden, B., Weber, F. and Schaffner, W., 1988, Redundancy of Information in Enhancers as a Principle of Mammlian Transcription Control, J. Mol. Biol., 201:81–90.PubMedCrossRefGoogle Scholar
  27. Schmidt, J., Erfle, V., Pedersen, F.S., Rohmer, H., Schetters, H., Marquart, K-H. and Luz, A., 1984, Oncogenic retrovirus from spontaneous murine osteomas, I. Isolation and biological characterization, J. Gen. Virol., 65:2237–2248.PubMedCrossRefGoogle Scholar
  28. Shinnick, T.M., Lerner, R.A. and Sutcliffe, J., 1981, Nucleotide sequence of Moloney murine leukemia virus, Nature (London), 293:543–548.CrossRefGoogle Scholar
  29. Short, M.K., Okenquist, S.A. and Lenz, J., 1987, Correlation of leukemogenic potential of murine retroviruses with transcriptional tissue preference of the virla long terminal repeats, J. Virol., 61:1067–1072.PubMedGoogle Scholar
  30. Speck, N. and Baltimore, D., 1987, Six distinct nuclear factors interact with the 75-base-pair repeat of Moloney leukemia virus enhancer, Mol. Cell. Biol., 7:1101–1110.PubMedGoogle Scholar
  31. Tanaka, K., Gorelik, E., Watanabe, M., Hozumi, N. and Jay, G., 1988, Rejection of B16 melanoma induced by expression of a transfected major histocompatibility complex class I gene, Mol. Cell. Biol., 8:1857–1861.PubMedGoogle Scholar
  32. Thornell, A., Hallberg, B. and Grundström, T., 1988, Differential protein binding in lymphocytes to a sequence in the enhancer of the mouse retrovirus SL3-3, Mol. Cell. Biol., 8:1625–1637.PubMedGoogle Scholar
  33. Van Beveren, C., Van Straaten, F., Curran, T., Muller, R. and Verma, I.M., 1983, Analysis of FBJ-MuSV provirus and c-fos (mouse) gene reveals that viral and cellular fos gene products have different carboxy termini. Cell, 32:1241–1255PubMedCrossRefGoogle Scholar
  34. Vogt, M., Haggblom, S., Swift, S. and Haas, M., 1985, Envelope gene and long terminal repeat determine the different biological properties of Rauscher, Friend and Moloney mink cell focus-inducing viruses, J. Virol., 55:184–192.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Niels Ole Kjeldgaard
    • 1
  • Allan J. Bækgaard
    • 1
  • Hong Yan Dai
    • 1
  • Michael Etzerodt
    • 1
  • Poul Jørgensen
    • 1
  • Steen Lovmand
    • 1
  • Henrik Steen Olsen
    • 1
  • Finn Skou Pedersen
    • 1
  1. 1.Institute of Molecular Biology and Plant PhysiologyAarhus UniversityÅrhus CDenmark

Personalised recommendations