Skip to main content

Structural and Functional tRNA Mimicry of the 3’-end of Turnip Yellow Mosaic Virus RNA

  • Chapter
Evolutionary Tinkering in Gene Expression

Part of the book series: NATO ASI Series ((volume 169))

Abstract

The 3’-ends of several plant viral RNAs show a number of functional characteristics of tRNAs1,2; they are recognized by a set of tRNA-specific proteins, including aminoacyl-tRNA synthetases. So, the RNA of turnip yellow mosaic virus can be valylated by yeast valyl-tRNA synthetase3,4 with kinetic constants very close to those of the aminoacylation of yeast tRNAVal by this enzyme5. The 3′-ends of these viral RNAs however, are lacking several characteristic primary structural features of tRNAs such as strategic D- or T-loop sequences and modified bases. Moreover, they cannot be folded a priori into a canonical tRNA cloverleaf. In the case of TYMV RNA, the question arose as to “how do two structures as different as tRNAVal and the 3′-region of the viral RNA behave in such a similar fashion in the presence of valyl-tRNA synthetase?”. This question might be answered if one supposes that similar structural domains are recognized by the synthetase and exist at the level of the three dimensional structures and even at the level of their secondary structures. In this view, the secondary structure of the 3′-end of TYMV RNA was established by enzymatic footprinting methodologies6. A three-dimensional L-shaped conformation mimicking tRNA, but involving a new RNA folding principle, the pseudoknot, was proposed by the Leiden group7,8 for the 86 last nucleotides of this RNA. A rigourous graphical modelling allowed to assess the reality of this pseudoknotted folding9. To understand the involvement of the 3′-end of the TYMV RNA in aminoacylation, the direct contact points between this part of the RNA and yeast valyl-tRNA synthetase were determined10. Moreover, the study of the valylation of tRNA-like transcripts from cloned cDNA of TYMV RNA permitted to determine the minimal length of the RNA necessary for optimal valylation11.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hall, T.C., 1979, Transfer RNA-like structures in viral genomes, Int. Rev. Cytol., 60:1.

    Article  PubMed  CAS  Google Scholar 

  2. Haenni, A.L., Joshi, S. and Chapeville, F., 1982, tRNA-like structures in the genomes of RNA viruses, Prog. Nucl. Acid Res. Mol. Biol., 27:85.

    Article  CAS  Google Scholar 

  3. Pink, M., Yot, P., Chapeville, F. and Duranton, H., 1970, Enzymatic binding of valine to the 3′-end of TYMV RNA, Nature, 226:954.

    Article  Google Scholar 

  4. Yot, P., Pinck, M., Haenni, A.L., Duranton, H. and Chapeville, F., 1970, Valine specific tRNA-like structure in turnip yellow mosaic virus RNA, Proc. Natl. Acad. Sci. USA, 67:1345.

    Article  PubMed  CAS  Google Scholar 

  5. Giegé, R., Briand, J.P., Mengual, R., Ebel, J.P. and Hirth, L., 1978, Valylation of two RNA components of turnip yellow mosaic virus and specificity of the aminoacylation reaction, Eur. J. Biochem., 84:251.

    Article  PubMed  Google Scholar 

  6. Florentz, C., Briand, J.P., Romby, P., Hirth, L., Ebel, J.P. and Giegé, R., 1982, The tRNA-like structure of turnip yellow mosaic virus RNA: structural organization of the last 159 nucleotides from the 3′-OH terminus, The EMBO J., 1:269.

    CAS  Google Scholar 

  7. Rietveld, K., Van Poelgeest, R., Pleij, C.W.A., Van Boom, J.H. and Bosch, L., 1982, The tRNA-like structure at the 3′ terminus of turnip yellow mosaic virus RNA. Differences and similarities with canonical tRNA, Nucleic Acids Res., 10:1929.

    Article  PubMed  CAS  Google Scholar 

  8. Rietveld, K., Pleij, C.W.A. and Bosch, L., 1983, Three-dimensional models of the tRNA-like 3′-termini of some plant viral RNAs, The EMBO J., 2:1079.

    CAS  Google Scholar 

  9. Dumas, P., Moras, D., Florentz, C., Giegé, R., Verlaan, P., Van Belkum, A. and Pleij, C.W.A., 1987, 3-D graphics modelling of the tRNA-like 3′-end of turnip yellow mosaic virus RNA: structural and functional implications, J. Biomol. Struct. Dyn., 4:707.

    Article  PubMed  CAS  Google Scholar 

  10. Florentz, C. and Giegé, R., 1986, Contact areas of the Turnip Yellow Mosaic Virus tRNA-like structure interacting with yeast valyl-tRNA synthetase, J. Mol. Biol., 191:117.

    Article  PubMed  CAS  Google Scholar 

  11. Dreher, T.C., Florentz, C. and Giegé, R., 1988, Valylation of tRNA-like transcripts of turnip yellow mosaic virus demonstrate that the L-shaped region at the 3′ end of the viral RNA is not sufficient for optimal valylation, Biochimie, in press.

    Google Scholar 

  12. Briand, J.P., Jonard, G., Guilley, H., Richards, K.E. and Hirth, L., 1977, Nucleotide sequence (n=159) of the amino acid accepting 3′-OH extremity of turnip yellow mosaic virus RNA and the last portion of its coat protein, Eur. J. Biochem., 72:453.

    Article  PubMed  CAS  Google Scholar 

  13. Silberklang, M., Prochiantz, A., Haenni, A.L. and RajBhandary, U.L., 1977, Studies on the sequence of the 3′ terminal region of turnip yellow mosaic virus RNA, Eur. J. Biochem., 72:465.

    Article  PubMed  CAS  Google Scholar 

  14. Florentz, C., Mengual, R., Briand, J.P. and Giegé, R., 1982, Large scale purification of the 3′-OH-terminal tRNA-like sequence (n=159) of turnip yellow mosaic virus RNA, Eur. J. Biochem., 123:89.

    Article  PubMed  CAS  Google Scholar 

  15. Branlant, C., Krol, A., Ebel, J.P., Gallinaro, H., Lazar, E. and Jacob, M., 1981, The conformation of chicken, rat and human U1A RNAs in solution. Nucleic Acids Res. 9:841.

    Article  PubMed  CAS  Google Scholar 

  16. Favorova, O.O., Fasiolo, F., Keith, G., Vassilenko, S.K. and Ebel, J.P., 1981, Partial digestion of tRNA-Aminoacyl-tRNA synthetase complexes with cobra venom ribonuclease, Biochemistry, 20:1006.

    Article  PubMed  CAS  Google Scholar 

  17. Romby, P., Carbon, P., Westhof, E., Ehresmann, C., Ebel, J.P., Ehresmann, B. and Giegé, R., 1987, Importance of conserved residues for the conformation fo the T-loop in tRNAs, J. Biomol. Struct. Dyn., 5:669.

    Article  PubMed  CAS  Google Scholar 

  18. Pleij, C.W.A., Rietveld, K. and Bosch, L., 1985, A new principle of RNA folding based on pseudoknotting, Nucleic Acids Res., 13:1717.

    Article  PubMed  CAS  Google Scholar 

  19. Jones, T.A., 1978, A graphic model building and refinement system for macromolecules, J. Appl. Crys., 11:268.

    Article  CAS  Google Scholar 

  20. Moras, D., Thierry, J.C., Comarmond, M.B., Fischer, J., Weiss, R., Ebel, J.P. and Giegé, R., 1980, Three-dimensional structure of yeast tRNAAsp, Nature, 288, 669.

    Article  PubMed  CAS  Google Scholar 

  21. Westhof, E., Dumas, P. and Moras, D., 1985, Crystallographic refinement of yeast aspartic transfer RNA, J. Mol. Biol., 184:119.

    Article  PubMed  CAS  Google Scholar 

  22. Brennan, R. and Sundaralingam, M., 1976, Structure of transfer RNA molecules containing the long variable loop, Nucleic Acids Res., 3:3235.

    Article  PubMed  CAS  Google Scholar 

  23. Dock-Bregeon, A.C., Westhof, E., Giegé, R. and Moras, D., 1988, Solution structure of a tRNA with a large variable region: yeast tRNASer, submited for publication.

    Google Scholar 

  24. De Bruijn, M.H.L. and Klug, A., 1983, A model for the tertiary structure of mammalian mitochondrial transfer RNAs lacking the entire dihydrouridine loop and stem, The EMBO J., 2:1309.

    Google Scholar 

  25. Romby, P., Westhof, E., Toukifimpa, R., Mache, R., Ebel, J.P., Ehresmann, C. and Ehresmann, B., 1988, Higher order structure of chloroplastic 5S ribosomal RNA from spinach, Biochemistry, 27, 4721.

    Article  PubMed  CAS  Google Scholar 

  26. Ebel, J.P., Renaud, M., Dietrich, A., Fasiolo, F., Keith, G., Baltzinger, M., Remy, P., Bonnet, J. and Giegé, R., 1979, Interaction between tRNA and aminoacyl-tRNA synthetase in the valine and phenylalanine systems from yeast, In “Transfer RNA: Structure, Properties and Recognition”, Cold Spring Harbor Lab. (Söll, D., Abelson, J.N. & Schimmel, P. eds) 235.

    Google Scholar 

  27. Schimmel, P.A., 1987, Aminoacyl-tRNA synthetases: general scheme of structure function relationships in the polypeptides and recognition of RNAs, Ann. Rev. Biochem., 56:125

    Article  PubMed  CAS  Google Scholar 

  28. Dreher, T.W., Bujarski, J.J. and Hall, T.C., 1984, Mutant viral RNAs synthesized in vitro show altered aminoacylation and replicase activities, Nature, 311:171.

    Article  PubMed  CAS  Google Scholar 

  29. Dreher, T.W. and Hall, T.C., 1988, Mutational analysis of the tRNA mimicry of brome mosaic virus RNA, sequence and structural requirements for aminoacylation and 3′-adenylation, J. Mol. Biol., 201:41.

    Article  PubMed  CAS  Google Scholar 

  30. Kisselev, L.L., 1985, The role of anticodon in recognition of tRNA by aminoacyl-tRNA synthetase, Prog. Nucl. Acid Res. Mol. Biol., 32:237.

    Article  CAS  Google Scholar 

  31. Vlassov, V.V., Kern, D., Romby, P., Giegé, R. and Ebel, J.P., 1983, Interaction of tRNAPhe and tRNAVal with aminoacytl-tRNA synthetases: a chemical modification study, Eur. J. Biochem., 132:537.

    Article  PubMed  CAS  Google Scholar 

  32. Théobald, A., Springer, M., Grunberg-Manago, M., Ebel, J.P. and Giegé, R., 1988, Tertiary structure of Escherichia coli tRNAThr3 in solution and interaction of this tRNA with the cognate threonyl-tRNA synthetase, Eur. J., Biochem. 175:511.

    Article  Google Scholar 

  33. Romby, P., Moras, D., Bergdoll, M., Dumas, P., Vlassov, V.V., Westhof, E., Ebel, J.P. and Giegé, R., 1985, Yeast tRNAAsp tertiary structure in solution and areas of interaction of the tRNA with aspartyl-tRNA synthetase, J. Mol. Biol., 184:455.

    Article  PubMed  CAS  Google Scholar 

  34. Renaud, M., Dietrich, A., Giegé, R., Remy, P. and Ebel, J.P., 1979, Interaction between yeast tRNAVal and yeast valyl-tRNA syntehtase studied by monochromatic ultraviolet light incued cross-linking, Eur. J. Biochem., 101:475. 1979

    Article  PubMed  CAS  Google Scholar 

  35. Zaccaï, G., Morin, P; Jacrot, B., Moras, D., Thierry, J.C. and Giegé, R., 1979, Interactions of yeast valyl-tRNA synthetase with RNAs and conformational changes of the enzyme, J. Mol. Biol., 129:483.

    Article  PubMed  Google Scholar 

  36. Rietveld, K., 1984, Three-dimensional folding of the tRNA-like structures of some plant viral RNAs. A new principle in the folding of RNA. PhD University of Leiden.

    Google Scholar 

  37. Joshi, S., Chapeville, F. and Haenni, A.L., 1982, Length requirements for tRNA specific enzymes and cleavage specificity at the 3′-end of turnip yellow mosaic virus RNA, Nucleic Acids Res., 10:1947.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Ebel, JP., Giegé, R., Florentz, C. (1989). Structural and Functional tRNA Mimicry of the 3’-end of Turnip Yellow Mosaic Virus RNA. In: Grunberg-Manago, M., Clark, B.F.C., Zachau, H.G. (eds) Evolutionary Tinkering in Gene Expression. NATO ASI Series, vol 169. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5664-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5664-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5666-0

  • Online ISBN: 978-1-4684-5664-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics