Structural and Functional tRNA Mimicry of the 3’-end of Turnip Yellow Mosaic Virus RNA

  • Jean-Pierre Ebel
  • Richard Giegé
  • Catherine Florentz
Part of the NATO ASI Series book series (NATO ASI, volume 169)


The 3’-ends of several plant viral RNAs show a number of functional characteristics of tRNAs1,2; they are recognized by a set of tRNA-specific proteins, including aminoacyl-tRNA synthetases. So, the RNA of turnip yellow mosaic virus can be valylated by yeast valyl-tRNA synthetase3,4 with kinetic constants very close to those of the aminoacylation of yeast tRNAVal by this enzyme5. The 3′-ends of these viral RNAs however, are lacking several characteristic primary structural features of tRNAs such as strategic D- or T-loop sequences and modified bases. Moreover, they cannot be folded a priori into a canonical tRNA cloverleaf. In the case of TYMV RNA, the question arose as to “how do two structures as different as tRNAVal and the 3′-region of the viral RNA behave in such a similar fashion in the presence of valyl-tRNA synthetase?”. This question might be answered if one supposes that similar structural domains are recognized by the synthetase and exist at the level of the three dimensional structures and even at the level of their secondary structures. In this view, the secondary structure of the 3′-end of TYMV RNA was established by enzymatic footprinting methodologies6. A three-dimensional L-shaped conformation mimicking tRNA, but involving a new RNA folding principle, the pseudoknot, was proposed by the Leiden group7,8 for the 86 last nucleotides of this RNA. A rigourous graphical modelling allowed to assess the reality of this pseudoknotted folding9. To understand the involvement of the 3′-end of the TYMV RNA in aminoacylation, the direct contact points between this part of the RNA and yeast valyl-tRNA synthetase were determined10. Moreover, the study of the valylation of tRNA-like transcripts from cloned cDNA of TYMV RNA permitted to determine the minimal length of the RNA necessary for optimal valylation11.


Brome Mosaic Virus Turnip Yellow Mosaic Virus Plant Viral RNAs Anticodon Stem Viral Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hall, T.C., 1979, Transfer RNA-like structures in viral genomes, Int. Rev. Cytol., 60:1.PubMedCrossRefGoogle Scholar
  2. 2.
    Haenni, A.L., Joshi, S. and Chapeville, F., 1982, tRNA-like structures in the genomes of RNA viruses, Prog. Nucl. Acid Res. Mol. Biol., 27:85.CrossRefGoogle Scholar
  3. 3.
    Pink, M., Yot, P., Chapeville, F. and Duranton, H., 1970, Enzymatic binding of valine to the 3′-end of TYMV RNA, Nature, 226:954.CrossRefGoogle Scholar
  4. 4.
    Yot, P., Pinck, M., Haenni, A.L., Duranton, H. and Chapeville, F., 1970, Valine specific tRNA-like structure in turnip yellow mosaic virus RNA, Proc. Natl. Acad. Sci. USA, 67:1345.PubMedCrossRefGoogle Scholar
  5. 5.
    Giegé, R., Briand, J.P., Mengual, R., Ebel, J.P. and Hirth, L., 1978, Valylation of two RNA components of turnip yellow mosaic virus and specificity of the aminoacylation reaction, Eur. J. Biochem., 84:251.PubMedCrossRefGoogle Scholar
  6. 6.
    Florentz, C., Briand, J.P., Romby, P., Hirth, L., Ebel, J.P. and Giegé, R., 1982, The tRNA-like structure of turnip yellow mosaic virus RNA: structural organization of the last 159 nucleotides from the 3′-OH terminus, The EMBO J., 1:269.Google Scholar
  7. 7.
    Rietveld, K., Van Poelgeest, R., Pleij, C.W.A., Van Boom, J.H. and Bosch, L., 1982, The tRNA-like structure at the 3′ terminus of turnip yellow mosaic virus RNA. Differences and similarities with canonical tRNA, Nucleic Acids Res., 10:1929.PubMedCrossRefGoogle Scholar
  8. 8.
    Rietveld, K., Pleij, C.W.A. and Bosch, L., 1983, Three-dimensional models of the tRNA-like 3′-termini of some plant viral RNAs, The EMBO J., 2:1079.Google Scholar
  9. 9.
    Dumas, P., Moras, D., Florentz, C., Giegé, R., Verlaan, P., Van Belkum, A. and Pleij, C.W.A., 1987, 3-D graphics modelling of the tRNA-like 3′-end of turnip yellow mosaic virus RNA: structural and functional implications, J. Biomol. Struct. Dyn., 4:707.PubMedCrossRefGoogle Scholar
  10. 10.
    Florentz, C. and Giegé, R., 1986, Contact areas of the Turnip Yellow Mosaic Virus tRNA-like structure interacting with yeast valyl-tRNA synthetase, J. Mol. Biol., 191:117.PubMedCrossRefGoogle Scholar
  11. 11.
    Dreher, T.C., Florentz, C. and Giegé, R., 1988, Valylation of tRNA-like transcripts of turnip yellow mosaic virus demonstrate that the L-shaped region at the 3′ end of the viral RNA is not sufficient for optimal valylation, Biochimie, in press.Google Scholar
  12. 12.
    Briand, J.P., Jonard, G., Guilley, H., Richards, K.E. and Hirth, L., 1977, Nucleotide sequence (n=159) of the amino acid accepting 3′-OH extremity of turnip yellow mosaic virus RNA and the last portion of its coat protein, Eur. J. Biochem., 72:453.PubMedCrossRefGoogle Scholar
  13. 13.
    Silberklang, M., Prochiantz, A., Haenni, A.L. and RajBhandary, U.L., 1977, Studies on the sequence of the 3′ terminal region of turnip yellow mosaic virus RNA, Eur. J. Biochem., 72:465.PubMedCrossRefGoogle Scholar
  14. 14.
    Florentz, C., Mengual, R., Briand, J.P. and Giegé, R., 1982, Large scale purification of the 3′-OH-terminal tRNA-like sequence (n=159) of turnip yellow mosaic virus RNA, Eur. J. Biochem., 123:89.PubMedCrossRefGoogle Scholar
  15. 15.
    Branlant, C., Krol, A., Ebel, J.P., Gallinaro, H., Lazar, E. and Jacob, M., 1981, The conformation of chicken, rat and human U1A RNAs in solution. Nucleic Acids Res. 9:841.PubMedCrossRefGoogle Scholar
  16. 16.
    Favorova, O.O., Fasiolo, F., Keith, G., Vassilenko, S.K. and Ebel, J.P., 1981, Partial digestion of tRNA-Aminoacyl-tRNA synthetase complexes with cobra venom ribonuclease, Biochemistry, 20:1006.PubMedCrossRefGoogle Scholar
  17. 17.
    Romby, P., Carbon, P., Westhof, E., Ehresmann, C., Ebel, J.P., Ehresmann, B. and Giegé, R., 1987, Importance of conserved residues for the conformation fo the T-loop in tRNAs, J. Biomol. Struct. Dyn., 5:669.PubMedCrossRefGoogle Scholar
  18. 18.
    Pleij, C.W.A., Rietveld, K. and Bosch, L., 1985, A new principle of RNA folding based on pseudoknotting, Nucleic Acids Res., 13:1717.PubMedCrossRefGoogle Scholar
  19. 19.
    Jones, T.A., 1978, A graphic model building and refinement system for macromolecules, J. Appl. Crys., 11:268.CrossRefGoogle Scholar
  20. 20.
    Moras, D., Thierry, J.C., Comarmond, M.B., Fischer, J., Weiss, R., Ebel, J.P. and Giegé, R., 1980, Three-dimensional structure of yeast tRNAAsp, Nature, 288, 669.PubMedCrossRefGoogle Scholar
  21. 21.
    Westhof, E., Dumas, P. and Moras, D., 1985, Crystallographic refinement of yeast aspartic transfer RNA, J. Mol. Biol., 184:119.PubMedCrossRefGoogle Scholar
  22. 22.
    Brennan, R. and Sundaralingam, M., 1976, Structure of transfer RNA molecules containing the long variable loop, Nucleic Acids Res., 3:3235.PubMedCrossRefGoogle Scholar
  23. 23.
    Dock-Bregeon, A.C., Westhof, E., Giegé, R. and Moras, D., 1988, Solution structure of a tRNA with a large variable region: yeast tRNASer, submited for publication.Google Scholar
  24. 24.
    De Bruijn, M.H.L. and Klug, A., 1983, A model for the tertiary structure of mammalian mitochondrial transfer RNAs lacking the entire dihydrouridine loop and stem, The EMBO J., 2:1309.Google Scholar
  25. 25.
    Romby, P., Westhof, E., Toukifimpa, R., Mache, R., Ebel, J.P., Ehresmann, C. and Ehresmann, B., 1988, Higher order structure of chloroplastic 5S ribosomal RNA from spinach, Biochemistry, 27, 4721.PubMedCrossRefGoogle Scholar
  26. 26.
    Ebel, J.P., Renaud, M., Dietrich, A., Fasiolo, F., Keith, G., Baltzinger, M., Remy, P., Bonnet, J. and Giegé, R., 1979, Interaction between tRNA and aminoacyl-tRNA synthetase in the valine and phenylalanine systems from yeast, In “Transfer RNA: Structure, Properties and Recognition”, Cold Spring Harbor Lab. (Söll, D., Abelson, J.N. & Schimmel, P. eds) 235.Google Scholar
  27. 27.
    Schimmel, P.A., 1987, Aminoacyl-tRNA synthetases: general scheme of structure function relationships in the polypeptides and recognition of RNAs, Ann. Rev. Biochem., 56:125PubMedCrossRefGoogle Scholar
  28. 28.
    Dreher, T.W., Bujarski, J.J. and Hall, T.C., 1984, Mutant viral RNAs synthesized in vitro show altered aminoacylation and replicase activities, Nature, 311:171.PubMedCrossRefGoogle Scholar
  29. 29.
    Dreher, T.W. and Hall, T.C., 1988, Mutational analysis of the tRNA mimicry of brome mosaic virus RNA, sequence and structural requirements for aminoacylation and 3′-adenylation, J. Mol. Biol., 201:41.PubMedCrossRefGoogle Scholar
  30. 30.
    Kisselev, L.L., 1985, The role of anticodon in recognition of tRNA by aminoacyl-tRNA synthetase, Prog. Nucl. Acid Res. Mol. Biol., 32:237.CrossRefGoogle Scholar
  31. 31.
    Vlassov, V.V., Kern, D., Romby, P., Giegé, R. and Ebel, J.P., 1983, Interaction of tRNAPhe and tRNAVal with aminoacytl-tRNA synthetases: a chemical modification study, Eur. J. Biochem., 132:537.PubMedCrossRefGoogle Scholar
  32. 32.
    Théobald, A., Springer, M., Grunberg-Manago, M., Ebel, J.P. and Giegé, R., 1988, Tertiary structure of Escherichia coli tRNAThr3 in solution and interaction of this tRNA with the cognate threonyl-tRNA synthetase, Eur. J., Biochem. 175:511.CrossRefGoogle Scholar
  33. 33.
    Romby, P., Moras, D., Bergdoll, M., Dumas, P., Vlassov, V.V., Westhof, E., Ebel, J.P. and Giegé, R., 1985, Yeast tRNAAsp tertiary structure in solution and areas of interaction of the tRNA with aspartyl-tRNA synthetase, J. Mol. Biol., 184:455.PubMedCrossRefGoogle Scholar
  34. 34.
    Renaud, M., Dietrich, A., Giegé, R., Remy, P. and Ebel, J.P., 1979, Interaction between yeast tRNAVal and yeast valyl-tRNA syntehtase studied by monochromatic ultraviolet light incued cross-linking, Eur. J. Biochem., 101:475. 1979PubMedCrossRefGoogle Scholar
  35. 35.
    Zaccaï, G., Morin, P; Jacrot, B., Moras, D., Thierry, J.C. and Giegé, R., 1979, Interactions of yeast valyl-tRNA synthetase with RNAs and conformational changes of the enzyme, J. Mol. Biol., 129:483.PubMedCrossRefGoogle Scholar
  36. 36.
    Rietveld, K., 1984, Three-dimensional folding of the tRNA-like structures of some plant viral RNAs. A new principle in the folding of RNA. PhD University of Leiden.Google Scholar
  37. 37.
    Joshi, S., Chapeville, F. and Haenni, A.L., 1982, Length requirements for tRNA specific enzymes and cleavage specificity at the 3′-end of turnip yellow mosaic virus RNA, Nucleic Acids Res., 10:1947.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Jean-Pierre Ebel
    • 1
  • Richard Giegé
    • 1
  • Catherine Florentz
    • 1
  1. 1.Institut de Biologie Moléculaire et CellulaireCentre National de la Recherche ScientifiqueStrasbourg-CedexFrance

Personalised recommendations