Was RNA the First Genetic Polymer?

  • Leslie E. Orgel
Part of the NATO ASI Series book series (NATO ASI, volume 169)


In recent years the hypothesis that an ‘organism’ based on RNA but lacking proteins is the ancestor of all living things has become increasingly popular (Cech, 1986; Darnell & Doolittle, 1986; Gilbert, 1986; Westheimer, 1986). The purpose of this article is to discuss the consequences of this hypothesis from the point of view of a chemist interested in the origins of life. How could such an organism have evolved? The nature of the ‘metabolism’ of the first RNA organisms is outside the scope of our discussion. We assume only that they made use of catalytic RNAs (ribozymes), one of which was capable of carrying out RNA replication.


Nucleotide Analogue Zirconium Phosphate Prebiotic Synthesis Glyceraldehyde Phosphate Genetic Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberti, G., Constantino, U., Allulli, S., and Tomassini, N., 1978, Crystalline Zr(R-PO3)2 and Zr(R-OPO3)2 compounds. (R = Organic Radical) A new class of materials having layered structure of the zirconium phosphate type. J. Inorg. Nucl. Chem., 40:1113.CrossRefGoogle Scholar
  2. Cairns-Smith, A.G., 1982, “Genetic takeover and the mineral origins of life,” Cambridge University Press, Cambridge (Great Britain).Google Scholar
  3. Cech, T.R., 1986, A model for the RNA-catalyzed replication of RNA, Proc. Natl. Acad. Sci. USA., 83:4360.PubMedCrossRefGoogle Scholar
  4. Clearfield, A., 1984, Inorganic ion exchanges with layered structures. Ann. Rev. Mater. Sci., 205.Google Scholar
  5. Darnell, J.E., and Doolittle, W.F., 1986, Speculations on the early course of evolution, Proc. Natl. Acad. Sci. USA., 83:1271.PubMedCrossRefGoogle Scholar
  6. Dines, M.B., and Griffith, P.C., 1983, The mixed-component layered tetravalent metal phosphonate system, Th(O3PPh)x(O3PC6H4Ph)2-x. Inorg. Chem., 22:567.CrossRefGoogle Scholar
  7. Fluharty, A.L., and Ballou, C.E., 1959, D-Threose 2,4-diphosphate inhibition of D—glyceraldehyde 3-phosphate dehydrogenase. J. Biol Chem., 234:2517.PubMedGoogle Scholar
  8. Fuller, W.D., Sanchez, R.A., and Orgel, L.E., 1972, Studies in prebiotic synthesis. VI. Synthesis of purine nucleosides. J. Mol. Biol., 67:25–33.PubMedCrossRefGoogle Scholar
  9. Gilbert, W., 1986, The RNA World. Nature, 319:618.CrossRefGoogle Scholar
  10. Harsch, G., Harsch, M., Bauer, H., and Voelter, W., 1983, Produktverteilung und Mechanismus der Gesamtreaktion der Formose-Reaktion (Product Analysis and Mechanism of the Formose Reaction.) Z. Naturforsch B, 38B:1269; and references therein. Harsch, G., Bauer, H., and Voelter, W., 1984, Kinetik, Katalyse und Mechanismus der Sekundarreaktion in der Schlussphase der Formose-Reaktion. Liebigs Analen der Chemie, 623; and references therein. Hill, A.R., Jr., Nord, L.D., Orgel, L.E., and Robins R.K., 1988, Cyclization of nucleotide analogues as an obstacle to polymerization, J. Mol. Evol. 28:00.Google Scholar
  11. Joyce, G.F., Inoue, T., and Orgel, L.E., 1984a, Non-enzymatic template-directed synthesis on RNA random copolymers: poly(C,U) templates. J. Mol Biol., 176:279.PubMedCrossRefGoogle Scholar
  12. Joyce, G.F., Visser, G.M., van Boeckel, C.A.A., van Boom, J.H., Orgel, L.E., and van Westrenen, J., 1984b, Chiral selection in poly(C)-directed synthesis of oligo(G). Nature, 310:602.PubMedCrossRefGoogle Scholar
  13. Joyce, G.J., Schwartz, A.W., Miller, S.L., and Orgel, L.E. 1987, A case for an ancestral genetic system involving simple analogues of the nucleotides. Proc. Natl. Acad. Sci. USA, 84:4398.PubMedCrossRefGoogle Scholar
  14. Miller, S.L., Personal communication.Google Scholar
  15. Morgenlie, S., 1980, Gas Chromatography-Mass spectrometry of hexuloses and pentuloses as their O-isopropylidene derivatives: analysis of product mixtures from triose aldol-condensations. Carbohydrate Research, 80:215.CrossRefGoogle Scholar
  16. Orgel, L.E., 1986, Did template-directed nucleation precede molecular replication? Origins of Life, 17:27.PubMedCrossRefGoogle Scholar
  17. Orgel, L.E., 1987, Evolution of the genetic apparatus: a review, pp. 9–16, in “Cold Spring Harbor Symposia on Quantitative Biology”, Vol. LII ‘The Evolution of Catalytic Function’, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  18. Sanchez, R.A., and Orgel, L.E., 1970, Studies m prebiotic synthesis. V. Synthesis and photo-anomerization of pyrimidine nucleosides. J. Mol. Biol., 47:531.PubMedCrossRefGoogle Scholar
  19. Sanchez, R.A., Personal communication.Google Scholar
  20. Schwartz, A.W., and Orgel, L.E., 1985, Template-directed synthesis of novel, nucleic acid-like structures. Science, 228:585.PubMedCrossRefGoogle Scholar
  21. Schwartz, A.W., Visscher, J., Bakker, C.G., Niessen, J., 1987, Nucleic acid-like structures. II. Polynucleotide analogues as possible primitive precursors of nucleic acids, Origins of Life, 17:351.PubMedCrossRefGoogle Scholar
  22. Westheimer, F.H., 1986, Polyribonucleic acids as enzymes. Nature, 319:534.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Leslie E. Orgel
    • 1
  1. 1.The Salk Institute for Biological StudiesSan DiegoUSA

Personalised recommendations