The Evolutionary Origin of Glycosomes: How Glycolysis Moved from Cytosol to Organelle in Evolution

  • P. Borst
  • B. W. Swinkels
Part of the NATO ASI Series book series (NATO ASI, volume 169)


One of the most remarkable forms of biochemical tinkering in evolution, is the movement of biochemical pathways from one cellular compartment to another. A striking example is provided by glycolysis, one of the most invariant and conserved biochemical pathways in nature. Textbooks state that this pathway is found in the cytosol in all eukaryotes, but in 1977 trypanosomes were found to be the exception to this rule (1,2). As shown in Fig. 1, glycolysis down to 3-P-glycerate is located in a peroxisome-like organelle, the glycosome, and only the last two steps, the conversion of 3-P-glycerate into pyruvate, occur in the cytosol. There is no doubt that this organization of glycolysis is eminently sensible: bloodstream trypanosomes rely entirely on glycolysis for ATP production. The segregation of the pathway in an organelle which takes up 4% of the trypanosome volume will reduce diffusion times of substrates and should allow a faster rate of glycolysis than would be possible if substrates and enzymes were freely distributed over the entire cytosol. Indeed, trypanosomes have by far the highest rate of glycolysis in nature.


Glycolytic Enzyme Trypanosoma Brucei Peroxisomal Protein Peroxisomal Target Signal Cell BioI 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. R. Opperdoes and P. Borst, Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: The glycosome, FEBS Letters, 80:360 (1977).PubMedCrossRefGoogle Scholar
  2. 2.
    F. R. Opperdoes, Compartmentation of Carbohydrate metabolism, Ann. Rev. Microbiol. 41:127 (1987).CrossRefGoogle Scholar
  3. 3.
    F. R. Opperdoes, The glycosome, Ann. N.Y. Acad. Sci. 386:543 (1982).CrossRefGoogle Scholar
  4. 4.
    F. R. Opperdoes, E. Nohynkova, E. Van Schaftingen, A.-M. Lambeir, M. Veenhuis and J. Van Roy, Demonstration of glycosomes (microbodies) in the Bodonid flagellate Trypanoplasma borelli (Protozoa, Kinetoplastida), Mol. and Biochem. Parasit. 30:155 (1988).CrossRefGoogle Scholar
  5. 5.
    P. Borst, How proteins get into microbodies (peroxisomes, glyoxysomes, glycosomes), Biochim. Biophys. Acta GSE 866:179 (1986).CrossRefGoogle Scholar
  6. 6.
    D. T. Hart, P. Baudhuin, F. R. Opperdoes and Ch. De Duve, Biogenesis of the glycosome in Trypanosoma brucei: the synthesis, translocation and turnover of glycosomal polypeptides, EMBO J. 6:1403 (1987).PubMedGoogle Scholar
  7. 7.
    K. A. Osinga, B. W. Swinkels, W. C. Gibson, P. Borst, G. H. Veneman, J. H. Van Boom, P. A. M. Michels and F. R. Opperdoes, Topogenesis of microbody enzymes: A sequence comparison of the genes for the glycosomal (microbody) and cytosolic phosphoglycerate kinases of Trypanosoma brucei, EMBO J. 4:3811 (1985).PubMedGoogle Scholar
  8. 8.
    S. M. Le Blancq, B. W. Swinkels, W. C. Gibson and P. Borst, Evidence for gene conversion between the phosphoglycerate kinase genes of Trypanosoma brucei, J. Mol. Biol. 200:439 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    W. C. Gibson, B. W. Swinkels and P. Borst, Post-transcriptional control of the differential expression of phosphoglycerate kinase genes in Trypanosoma brucei, J. Mol. Biol. 201:315 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    O. Misset, O. J. M. Bos and F. R. Opperdoes, Physical properties of glycolytic enzymes from Trypanosoma brucei: Remarkable differences with the mammalian counterparts, Eur. J. Biochem. 157:441 (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    R. K. Wierenga, B. Swinkels, P. A. M. Michels, K. Osinga, O. Misset, J. Van Beumen, W. Gibson, J. P. M. Postma, P. Borst, F. R. Opperdoes and W. G. J. Hol, Common elements on the surface of glycolytic enzymes from Trypanosoma brucei may serve as topogenic signals for import into glycosomes, EMBO J. 6:215 (1987).PubMedGoogle Scholar
  12. 12.
    B. W. Swinkels, R. Evers and P. Borst, The topogenic signal of the glycosomal (microbody) phosphoglycerate kinase of Crithidia fasciculata resides in a carboxy-terminal extension, EMBO J. 7:1159 (1988).PubMedGoogle Scholar
  13. 13.
    S. J. Gould, G.-A. Keller and S. Subramani, Identification of a peroxisomal targeting signal at the carboxy terminus of Firefly Luciferase, J. of Cell Biol. 105:2923 (1987).CrossRefGoogle Scholar
  14. 14.
    S. J. Gould, G.-A. Keller, and S. Subramani, Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins, J. of Cell Biol. 107 (1988) in press.Google Scholar
  15. 15.
    H. F. Dovey, M. Parsons and C. C. Wang, Biogenesis of glycosomes of T. brucei: An in vitro model of 3-phosphoglycerate kinase import, Proc. Natl. Acad. Sci. U.S.A. 85:2598 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    N. Visser, F. R. Opperdoes and P. Borst, Subcellular compartmentation of glycolytic intermediates in Trypanosoma brucei, Eur. J. Biochem. 118:521 (1981).PubMedCrossRefGoogle Scholar
  17. 17.
    K. Nicolay, M. Veenhuis, A. C. Douma and W. Harder, A 31P NMR study of the internal pH of yeast peroxisomes, Arch. Microbol. 147:37 (1987).CrossRefGoogle Scholar
  18. 18.
    E. Bellion and J.M. Goodman, Proton ionospheres prevent assembly of a peroxisomal protein, Cell 48:165 (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    P. Bird, M-J. Gething, and J. Sambrook, Translocation in yeast and mammalian cells: not all signal sequences are functionally equivalent, J. of Cell Biol. 105:2905 (1987)CrossRefGoogle Scholar
  20. 20.
    T. Cavalier-Smith, The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies, Ann. N. Y. Acad. Sci. 503:55 (1987).PubMedCrossRefGoogle Scholar
  21. 21.
    H. T. Jacobs, J. W. Posakony, J. W. Grula, J. W. Roberts, J.H. Xing, R. J. Britten, E. H. Davidson, Mitochondrial DNA sequences in the nuclear genome of Strongylocentrotus purpuratus, J. Mol. Biol. 156:609 (1983).CrossRefGoogle Scholar
  22. 22.
    G. Gelissen, J.Y. Bradfield, B.N. White, G.R. Wyatt, Mitochondrial DNA sequences in the nuclear genome of a locust, Nature 301:631 (1983).CrossRefGoogle Scholar
  23. 23.
    R. M. Wright, D. J. Cummings, Integration of mitochondrial gene sequences within the nuclear genome during senescence in a fungus, Nature 302:86 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    N. Pfanner, R. Phaller and W. Neupert, How finicky is mitochondrial protein import? Tr. Biochem. Sci. 13:165 (1988).CrossRefGoogle Scholar
  25. 25.
    A. Baker and G. Schatz, Sequences from a prokaryotic genome or the mouse dihydrofolate reductase gene can restore the import of a truncated precursor protein into yeast mitochondria, Proc. Natl. Acad. Sci. U.S.A. 84:3117 (1987).PubMedCrossRefGoogle Scholar
  26. 26.
    D. Roise and G. Schatz, Mitochondrial presequences, J. Biol. Chem. 263:4509 (1988).PubMedGoogle Scholar
  27. 27.
    P. B. Lazarow and Y. Fujiki, Biogenesis of Peroxisomes, Ann. Rev. Cell Biol. 1:489 (1985).PubMedCrossRefGoogle Scholar
  28. 28.
    C. De Duve “Peroxisomes and glyoxysomes,” H. Kindl and P. B. Lazarow, eds. Ann. N.Y. Acad. Sci. 386:1 (1982).PubMedCrossRefGoogle Scholar
  29. 29.
    D. P. Gearing and P. Nagley, Yeast mitochondrial ATPase subunit 8, normally a mitochondrial gene product, expressed in vitro and imported back into the organelle, EMBO J. 5:3651 (1986).PubMedGoogle Scholar
  30. 30.
    P. Nagley, L. B. Farrell, D. P. Gearing, D. Nero, S. Meltzer and R. J. Devenish, Assembly of functional proton-translocating ATPase complex in yeast mitochondria with cytoplasmically synthesized subunit 8, a polypeptide normally encoded within the organelle, Proc. Natl. Acad. Sci. USA, 85:2091 (1988).PubMedCrossRefGoogle Scholar
  31. 31.
    G. Von Heijne, Why mitochondria need a genome, FEBS Letters 198:1 (1986).CrossRefGoogle Scholar
  32. 32.
    T. Cavalier-Smith, Eukaryotes with no mitochondria, Nature 326:332 (1987).PubMedCrossRefGoogle Scholar
  33. 33.
    M. Veenhuis, J. P. Van Dijken and W. Harder, The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts, Adv. Microb. Physiol. 24:1 (1983).PubMedCrossRefGoogle Scholar
  34. 34.
    Y. Yotsuyanagi, Etudes sur le chondriome de la levure I. Variation de l’ultrastructure du chondriome au cours du cycle de la croissance aerobie, J. Ultrastructure Res. 7:121 (1962)CrossRefGoogle Scholar
  35. 35.
    L. A. Grivell, Protein import into mitochondria, Int. Rev. Cytol. 111:107 (1988).PubMedCrossRefGoogle Scholar
  36. 36.
    H. R. Mahler, The exon: intron structure of some mitochondrial genes and its relation to mitochondrial evolution, in: Int. Rev. of Cytol. G.H. Bourne and J. F. Danielli, eds. 82:1 (1983), Academic PressCrossRefGoogle Scholar
  37. 37.
    L. Bogorad, Evolution of organelles and eukaryotic genomes, Science 188:891 (1975).PubMedCrossRefGoogle Scholar
  38. 38.
    F. R. Opperdoes, Glycosomes may provide clues to the import of peroxisomal proteins, Tr. Biochem. Sci. 13:255 (1988).CrossRefGoogle Scholar
  39. 39.
    P. A. M. Michels, A. Polliszczak, K. A. Osinga, O. Misset, J. Van Beeumen, R. K. Wieringa, P. Borst and F. Opperdoes, Two tandemlylinked identical genes code for the glycosomal glyceraldehyde-phosphate dehydrogenase in Trypanosoma brucei, EMBO J. 5:1049 (1986).PubMedGoogle Scholar
  40. 40.
    W. Martin and R. Cerff, Prokaryotic features of a nucleus-encoded enzyme, cDNA sequences for chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenase from mustard (Sinapis alba), Eur. J. Biochem. 159:323 (1986).PubMedCrossRefGoogle Scholar
  41. 41.
    M. C. Shih, G. Lazar, and H. M. Goodman, Evidence in favor of the symbiotic origin of chloroplasts: primary structure and evolution of tobacco glyceraldehyde-3-phosphate dehydrogenases, Cell 47:73 (1986).PubMedCrossRefGoogle Scholar
  42. 42.
    J. A. Lake, Origin of the eukaryotic nucleus determined by rae-invariant analysis of rRNA sequences, Nature 331:184 (1988).PubMedCrossRefGoogle Scholar
  43. 43.
    M. W. Gray, and W. Ford Doolittle, Has the endosymbiont hypothesis been proven? Microbiol. Rev. 46:1 (1982).PubMedGoogle Scholar
  44. 44.
    B. W. Swinkels, W. C. Gibson, K. A. Osinga, R. Kramer, G. H. Veeneman, J. H. Van Boom and P. Borst, Characterization of the gene for the microbody (glycosomal) triosephosphate isomerase of Trypanosoma brucei, EMBO J . 5:1291 (1986).PubMedGoogle Scholar
  45. 45.
    W. H. Kunau, S. Bühne, M. De La Garza, C. Kionka, M. Mateblowski, U. Schultz-Borchard and R. Thieringer, Comparative enzymology of β-oxidation, Biochem. Soc. Transact. 16:418 (1988).Google Scholar
  46. 46.
    C. R. Vossbrinck, J.V. Maddox, S. Friedman, B.A. Debrunner-Vossbrinck and C. R. Woese, Ribosomal RNA sequence suggest microsporidia are extremely ancient eukaryotes, Nature 326:411 (1988).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • P. Borst
    • 1
  • B. W. Swinkels
    • 1
  1. 1.The Netherlands Cancer InstituteAmsterdamThe Netherlands

Personalised recommendations