Conformational Polymorphism in DNA

  • Alexander Rich
Part of the NATO ASI Series book series (NATO ASI, volume 169)


Biological systems are characterized by the abundant participation of macromolecules in carrying out most of their activities. These activities are varied and include information transfer in which nucleic acids play a specialized role. The proteins form organized structures including the catalytically active molecules that are responsible for channelling the metabolic activity of the cell.


Double Helix Minor Groove Twist Angle Helix Axis Sugar Pucker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azorin, F. and Rich, A., 1985, Isolation of Z-DNA binding proteins from SV40 minichromosomes, Cell. 41:365.PubMedCrossRefGoogle Scholar
  2. Behe, M. and Felsenfeld, G., 1981, Effects of methylation on a synthetic polynucleotide: The B-Z transition in poly(dG-m5dC)poly(dG-m5dC), Proc. Natl. Acad. Sci., 78:1619.PubMedCrossRefGoogle Scholar
  3. Brahms, S., Vergne, J., Brahms, J.G., DiCapua, E., Bucher, P. and Koller, T., 1982, Natural DNA sequences can form left-handed helices in low salt solution under conditions of topological constraint, J. Mol. Biol., 162:473.PubMedCrossRefGoogle Scholar
  4. Fishel, R., Detmer, K. and Rich, A., 1988, Identification of homologous pairing and strand-exchange activity from a human tumor cell line based on Z-DNA affinity chromatography, Proc. Natl. Acad. Sci., 85:36.PubMedCrossRefGoogle Scholar
  5. Franklin, R.E. and Gosling, R.G., 1953, The structure of sodium thymonucleate fibres, Acta Crystallogr., 6:673; 8:151.CrossRefGoogle Scholar
  6. Fujii, S., Wang, A.H.-J., van der Marel, G.A., van Boom, J.H., and Rich, A., 1982, Molecular structure of (m5dC-dG)3: The role of the methyl group on 5-methylcytosine in stabilizing Z-DNA, Nucleic Acids Res., 10:7879.PubMedCrossRefGoogle Scholar
  7. Hamada, H., Petrino, M.G. and Kakunaga, T., 1982, A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes, Proc. Natl. Acad. Sci., 79:6465.PubMedCrossRefGoogle Scholar
  8. Haschemeyer, A.E.V and Rich, A., 1967, Nucleoside conformations: An analysis of steric barriers to rotation about the glycosidic bond, J. Mol. Biol., 27:369.PubMedCrossRefGoogle Scholar
  9. Kmiec, E.B., Augelides, D.J. and Holloman, W.K., 1985, Left-handed DNA and the synaptic pairing reaction promoted by Ustilago rec 1 protein, Cell. 40:139.PubMedCrossRefGoogle Scholar
  10. Kmiec, E.B. and Holloman, W.K., 1986, Homologous pairing of DNA molecules by Ustilago Rec 1 protein is promoted by sequences of Z-DNA, Cell. 44:545.PubMedCrossRefGoogle Scholar
  11. Lafer, E.M., Moller, A., Nordheim, A., Stollar, B.D. and Rich, A., 1981, Antibodies specific for left-handed Z-DNA, Proc. Natl. Acad. Sci., 78:3546.PubMedCrossRefGoogle Scholar
  12. Lafer, E.M., Sousa, R. and Rich A., 1985, Ami Z-DNA antibodies can stabilize Z-DNA in relaxed and linear plasmids under physiological conditions, EMBO J., 4:3655.PubMedGoogle Scholar
  13. Lafer, E.M., Sousa, R., Rosen, B., Hsu, A. and Rich, A., 1985, Isolation and characterization of Z-DNA binding proteins from wheat germ, Biochem., 24:5070.CrossRefGoogle Scholar
  14. Lafer, E.M., Sousa, R., Rashid, A., Rich, A. and Stollar, B.D., 1986, The effect of anti-Z-DNA antibodies on the B-DNA-Z-DNA equilibrium, J. Biol. Chem., 261:6439.Google Scholar
  15. Nordheim, A., Tesser, P., Azorin, F., Kwon, Y.H., Moller, A. and Rich, A., 1982, Isolation of Drosophila proteins that bind selectively to left-handed Z-DNA, Proc. Natl. Acad. Sci., 79:7729.PubMedCrossRefGoogle Scholar
  16. Nordheim, A. and Rich, A., 1983, Negatively supercoiled simian virus 40 DNA contains Z-DNA segments within transcriptional enhancer sequences, Nature, 303:674.PubMedCrossRefGoogle Scholar
  17. Peck, L.J., Nordheim, A., Rich, A. and Wang, J.C., 1982, Flipping of cloned d(CG)n · d(CG)n DNA sequences from a right-to a left-handed helical structure by salt, Co(III), or negative supercoiling, Proc. Natl. Acad. Sci. 79:4560.PubMedCrossRefGoogle Scholar
  18. Peck, L.J., Wang, J.C., Nordheim, A. and Rich, A., 1986, Rate of B to Z structural transition of supercoiled DNA, Mol. Biol., 190:125.CrossRefGoogle Scholar
  19. Pohl, F.M. and Jovin, T.M., 1972, Salt-induced co-operative conformational change of a synthetic DNA: Equilibrium and kinetic studies with poly(dG-dC), J. Mol. Biol., 67:375.PubMedCrossRefGoogle Scholar
  20. Ptashne, M., 1986, Gene regulation by proteins acting nearby and at a distance, Nature, 322:697.PubMedCrossRefGoogle Scholar
  21. Singleton, C.K., Klysik, J., Stirdivant, S.M. and Wells, R.D., 1982, Left-handed Z-DNA is induced by supercoiling in physiological ionic conditions, Nature, 299:312.PubMedCrossRefGoogle Scholar
  22. Son, T.-D., Guschlbauer, W., and Gueron, M., 1972, Flexibility and conformations of guanosine monophosphates by the Overhauser effect, J. Am. Chem. Soc. 94:7903.PubMedCrossRefGoogle Scholar
  23. Thamann, T.J., Lord, R.C., Wang, A.H.-J., and Rich, A., 1981, The high salt form of poly(dG-dC) · poly(dG-dC) is left-handed Z-DNA: Raman spectra of crystals and solutions, Nucleic Acids. Res., 9:5443.PubMedCrossRefGoogle Scholar
  24. Wang, A.H.-J., Quigley, G.J., Kolpak, F.J., Crawford, J.L., van Boom, J.H., van der Marel, G., and Rich, A., 1979, Molecular structure of a left-handed DNA fragment at atomic resolution, Nature 282:680.PubMedCrossRefGoogle Scholar
  25. Wang, A.H.-J., Gessner, R.V., van der Marel, G., van Boom, J.H. and Rich, A., 1985, Crystal structure of Z-DNA without an alternating purine-pyrimidine sequence, Proc. Natl. Acad. Sci. 82:3611.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Alexander Rich
    • 1
  1. 1.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations