A Review of the Growth of 3D II-VI Compounds

  • B. J. Fitzpatrick
Part of the NATO ASI Series book series (NSSB, volume 200)


II–VI materials would be preferable as substrates for the growth of II–VI 2D structures. However, growth of the II–VI bulk materials is difficult, mainly because of the low stacking fault energy. In addition, several of the cubic compounds have phase transitions. Melt growth, always a preferable technique, has shown some recent advances, apparently, due to the addition of alloying elements which improve the structural quality. Vapor growth has also had some interesting developments, showing significant increases in rate, due, apparently, to the use of hydrogen as a transport agent. Other techniques have not kept pace with developments in melt and vapor growth.


Zone Melting Liquid Phase Epitaxy Twin Plane Transport Agent Lead Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Takeuchi, K. Suzuki, K. Maeda and H. Iwanaga, Philosophical Magazine A, 50:171 (1984).ADSCrossRefGoogle Scholar
  2. 2.
    K. A. Jones, J. Cryst. Growth 19:33 (1973).ADSCrossRefGoogle Scholar
  3. 3.
    A. Reznitsky, S. Permogorov, S. Verbin, A. Naumov, Yu. Korostelin, V. Novozhilov, and S. Prokoviev, Solid State Commun. 52:13 (1984).ADSCrossRefGoogle Scholar
  4. 4.
    T. Ohyama, E. Otsuka, T. Yoshida, M. Isshiki, and K. Igaki, Surface Science 170:491 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    L. Kowalczyk, J. Cryst. Growth 72:389 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    B. Fitzpatrick, J. Khurgin, P. M. Harnack and D. de Leeuw, Proceedings of the International Electron Devices Meeting, IEDM-86, p. 630.Google Scholar
  7. 7.
    B. Fitzpatrick, ibid. 86:106 (1988).Google Scholar
  8. 8.
    A. Addamiano and M. Aven, J. Appl. Phys. 31:36 (1960).ADSCrossRefGoogle Scholar
  9. 9.
    K. K. Dubenskiy, V. A. Sokolov and G. A. Ananin, Sov. J. Opt. Tech. 36:118 (1969).Google Scholar
  10. 10.
    S. Shionoya, Y. Kobayashi and T. Koda, J. Phys. Soc. Japan 20:2046 (1965).ADSCrossRefGoogle Scholar
  11. 11.
    M. Kozielski, J. Cryst. Growth 1:293 (1967).ADSCrossRefGoogle Scholar
  12. 12.
    I. Kikuma and M. Furukoshi, J. Cryst. Growth 44:467 (1978).ADSCrossRefGoogle Scholar
  13. 13.
    M. P. Kulakov, I. B. Savtchenko and A. V. Fadeev, J. Cryst. Growth 52:609 (1981).ADSCrossRefGoogle Scholar
  14. 14.
    A. Scharmann and D. Schwabe, J. Cryst. Growth 38:8 (1977).ADSCrossRefGoogle Scholar
  15. 15.
    U. Debska, W. Giriat, H. R. Harrison and D. R. Yodershort, J. Cryst. Growth 70:339 (1984).CrossRefGoogle Scholar
  16. 16.
    S. Sen, W. H. Konkel, S. J. Tighe, L. G. Bland, S. R. Sharma and R. E. Taylor, J. Cryst. Growth 86:111 (1988);CrossRefGoogle Scholar
  17. 16a.
    B. Pellicari, J. Cryst. Growth 86:146 (1988).ADSCrossRefGoogle Scholar
  18. 17.
    K. Guergouri, R. Triboulet, A. Tromson-carli and Y. Marfaing, J. Cryst. Growth 86:61 (1988).CrossRefGoogle Scholar
  19. 18.
    I. Kikuma, M. Sekine and M. Furukoski, J. Cryst. Growth 75:609 (1986).ADSCrossRefGoogle Scholar
  20. 19.
    M. Shone, B. Greenberg and M. Kaczenski, J. Cryst. Growth 86:132 (1988).CrossRefGoogle Scholar
  21. 20.
    P. Roksnoer and M. Rijbroek-van den Boom, J. Cryst. Growth 66:317 (1984).ADSCrossRefGoogle Scholar
  22. 21.
    A. A. Khan, W. P. Allred, B. Dean, S. Hooper, J. E. Hawkey and C. J. Johnson, J. Electr. Mads. 15:181(1986).ADSGoogle Scholar
  23. 22.
    H. M. Hobgood, R. N. Thomas, B. W. Swanson, R. M. Ware and I. Grant, J. Cryst. Growth 85:510 (1987).ADSCrossRefGoogle Scholar
  24. 23.
    J. B. Mullin and B. W. Straughan, Rev. Phys. Appl. 12:123 (1977).CrossRefGoogle Scholar
  25. 24.
    N. Klausutis, J. A. Adamski, C. V. Collins, M. Hunt, H. Lipson and J. R. Weiner, J. Electr. Matls. 4:625 (1975).ADSCrossRefGoogle Scholar
  26. 25.
    G. S. Meiling and R. Leombruno, J. Cryst. Growth 3:300 (1968).ADSCrossRefGoogle Scholar
  27. 26.
    G. S. Dubrovikov and A. L. Marbakh, Inorg. Matls. 11:32 (1975).Google Scholar
  28. 27.
    A. G. Fischer, in “Crystal Growth (2nd ed.),” ed. B. R. Pamplin, Pergamon, Oxford (1980), p. 380Google Scholar
  29. 28.
    D. de Nobel, Philips Res. Repts. 14:361 (1959).Google Scholar
  30. 29.
    M. P. Kulakov and A.V. Fadeev, Inorg. Matls. 17:1156 (1981).Google Scholar
  31. 30.
    B. J. Fitzpatrick, T. F. McGee III and P. M. Harnack, J. Cryst. Growth 78:242 (1986).ADSCrossRefGoogle Scholar
  32. 31.
    B. Fitzpatrick, P. M. Harnack and S. Cherin, Philips Journal of Research 41:452 (1986).Google Scholar
  33. 32.
    G. H. Dierssen and T. Gabor, J. Cryst. Growth 43:572 (1978).ADSCrossRefGoogle Scholar
  34. 33.
    E. Kaldis, in “Crystal Growth: Theory and Techniques”, ed. C. H. L. Goodman, Plenum Press, New York (1974) V.1, p. 49.Google Scholar
  35. 34.
    T. Ohyama, E. Otsuka, T. Yoshida, M. Isshiki and K. Igaki, Surface Science 170:491 (1986).ADSCrossRefGoogle Scholar
  36. 35.
    T. Taguchi, T. Kusao and A. Hiraki, Surface Science 72:46 (1985).Google Scholar
  37. 36.
    C. Geibel, H. Maier and R. Schmitt, J. Cryst. Growth 86:386 (1988).ADSCrossRefGoogle Scholar
  38. 37.
    K. Durose and G. J. Russell, J. Cryst. Growth 86:471 (1988).ADSCrossRefGoogle Scholar
  39. 38.
    R. Triboulet and Y. Marfaing, J. Cryst. Growth 51:89 (1981).ADSCrossRefGoogle Scholar
  40. 39.
    P. Vohl, Mat. Res. Bull. 4:689 (1969).CrossRefGoogle Scholar
  41. 40.
    A. M. Akhekyan, V. I. Koslovskii, Yu. V. Korostelin, A. S. Nasibov, Y. M. Popov and P. V. Shapkin, Sov. J. Quant. Elect. 15:737 (1985).ADSCrossRefGoogle Scholar
  42. 41.
    Yu. V. Korostelin, V. I. Kozlovsky, A. S. Nasibov, Ya. K. Skasyrsky and P. V. Shapkin, to be published.Google Scholar
  43. 42.
    R. O. Bell, N. Hemmat and F. Wald, Phys. Stat. Solidi (a) 1:375 (1970).ADSCrossRefGoogle Scholar
  44. 43.
    R. Schoenholz, R. Dian and R. Nitsche, J. Cryst. Growth 72:72 (1985).ADSCrossRefGoogle Scholar
  45. 44.
    R. Triboulet, J. Cryst. Growth 59:172 (1982).ADSCrossRefGoogle Scholar
  46. 45.
    G. A. Wolff and H. E. LaBelle, Jr., J. Am. Ceram. Soc, 48:441 (1965).CrossRefGoogle Scholar
  47. 46.
    B. Schaub, J. Gallet, A. Brunet-Jailly and P. Pellicari, Rev. Phys. Appl. 12:147 (1977).CrossRefGoogle Scholar
  48. 47.
    K. Zanio, J. Elect. Mat. 3:327 (1974).ADSCrossRefGoogle Scholar
  49. 48.
    A. W. Vere, V. Steward, C. A. Jones, D. J. Williams and N. Shaw, J. Cryst. Growth 72:97 (1985).ADSCrossRefGoogle Scholar
  50. 49.
    J. Nishizawa, K. Itoh, Y. Okuno and F. Sakurai, J. Appl. Phys. 57:2210 (1985).ADSCrossRefGoogle Scholar
  51. 50.
    S. S. Demidov, G. S. Kozina, L. N. Kurbatov, I. P. Kuz’mina and Yu. V. Shaldin, Sov. J. Quantum Elect. 14:291 (1984).ADSCrossRefGoogle Scholar
  52. 51.
    L. N. Kurbatov, G. S. Kozina, T. A. Kostinskaya, V. S. Rudnevskii, A. N. Lobachev, V. A. Kusnetsov, I. P. Kuzmina, Y. V. Shaldin and A. A. Shternberg, Sov. J. Quantum Elect. 10:215 (1980).ADSCrossRefGoogle Scholar
  53. 52.
    J. S. Vermaak and J. Petruzzello, J. Electronic Materials, 12:29 (1983).ADSCrossRefGoogle Scholar
  54. 53.
    J. L. Schmidt and J. E. Bowers, Technical Report AFWAL-TR-80–4068, Air Force Wright Patterson Aeronautical Laboratories, Ohio 1980 (ADA086342).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • B. J. Fitzpatrick
    • 1
  1. 1.Philips LaboratoriesNorth American Philips CorporationBriarcliff ManorUSA

Personalised recommendations