Advertisement

Growth of II-VI/III-V Mixed Heterostructures

  • M. C. Tamargo
  • J. L. de Miguel
  • F. S. Turco
  • B. J. Skromme
  • D. M. Hwang
  • R. E. Nahory
  • H. H. Farrell
Part of the NATO ASI Series book series (NSSB, volume 200)

Abstract

In this paper we describe results on the growth of ZnSe/GaAs heteroepitaxial structures using a dual chamber molecular beam epitaxy (MBE) system. We have observed a preference for ZnSe to grow on the GaAs (2x4) As rich surface. In addition, we observe one dimensional disorder in the initial nucleation of GaAs when grown on ZnSe layers. We attribute these two behaviors to the existance of an electronic imbalance at the II–VI/III–V interface which can be minimized by tailoring of the surface stoichiometry. We have also obtained extremely narrow photoluminescence linewidths for layers of ZnSe grown on thin buffer layers of GaAs, AlAs and Inx Ga1-x As. We attribute this to the elimination of inhomogeneous strain associated with partial lattice relaxation.

Keywords

Buffer Layer Reflection High Energy Electron Diffraction Reflection High Energy Electron Diffraction Pattern Molecular Beam Epitaxial ZnSe Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. C. Tamargo, J. L. de Miguel, D. M. Hwang and H. H. Farrell J. Vac. Sci. Technol. В 6, (1988) 784.CrossRefGoogle Scholar
  2. 2.
    M. C. Tamargo, J. L. de Miguel, D. M. Hwang, B. J. Skromme, M. H. Meynadier, R. E. Nahory and H. H. Farrell, Mat. Res. Soc. Symp. Proc. 102, (1988)125.CrossRefGoogle Scholar
  3. 3.
    H. H. Farrell, M. C. Tamargo and J. L. de Miguel, presented at the Physics and Chemistry of Surfaces and Interfaces Meeting, January, 1988.Google Scholar
  4. 4.
    H. H. Farrell, M. C Tamargo and J. L. de Miguel, J. Vac. Sci. Technol. В 6, (1988) 767.CrossRefGoogle Scholar
  5. 5.
    W. A. Harrison, E. A. Kraut, J. R. Waldrop and R. W. Grant, Phys. Rev. В 6, (1978) 4402.CrossRefGoogle Scholar
  6. 6.
    T. Yao, in The Technology and Physics of Molecular Beam Epitaxy, edited by E. H. C. Parker (Plenum, New York, 1986) p. 313.Google Scholar
  7. 7.
    B. J. Skromme, M. C. Tamargo, J. L. de Miguel and R. E. Nahory, presented at the Electronic Materials Conference, June, 1988.Google Scholar
  8. 8.
    B. J. Skromme, M. C Tamargo, J. L. de Miguel and R. E. Nahory, Mat. Res. Soc. Symp. Proc. 102(1988) 577.CrossRefGoogle Scholar
  9. 9.
    E. T. Yu and T. C. McGill, Appl. Phys Letters 53, (1988) 60.ADSCrossRefGoogle Scholar
  10. 10.
    G. D. Studtmann, R. L. Gunshor, L. A. Kolodziejski, M. R. Melloch, J. A. Cooper Jr., R. F. Pierret, D. P. Munich, C Choi and N. Otsuka, Appl. Phys. Letters 52, (1988) 1249.ADSCrossRefGoogle Scholar
  11. 11.
    K. Mazuruk, M. Benzaquen and D. Walsh, J. Physique 48 (1987) C5–357.Google Scholar
  12. 12.
    S. P. Kowalczyk, E. A. Kraut, J. R. Waldrop and R. W. Grant, J. Vac. Sci. Technol. 21, (1982)481.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • M. C. Tamargo
    • 1
  • J. L. de Miguel
    • 1
  • F. S. Turco
    • 1
  • B. J. Skromme
    • 1
  • D. M. Hwang
    • 1
  • R. E. Nahory
    • 1
  • H. H. Farrell
    • 1
  1. 1.BellcoreRed BankUSA

Personalised recommendations