Excitonic Complexes in Wide-Gap II-VI Semiconductors

  • J. Gutowski
Part of the NATO ASI Series book series (NSSB, volume 200)


During the last years it became evident that excitonic complexes play a very important role concerning the nonlinear optical properties of wide-gap II–VI semiconductors. Thus, tremendous efforts have been made to find out and describe excited states of free and, particularly, bound-exciton complexes, their excitation and decay mechanisms, and related scattering phenomena. This paper surveys recent results regarding bound-exciton complexes and their interaction with free-exciton systems (biexcitons) in wide-gap II–VI materials at moderate to high excitation densities. Through means of resonant excitation spectroscopy it is shown that bound-exciton systems in II–VI’s always possess a manifold of excited electronic states in which optical transitions often only become allowed under intense light irradiation. A comparison of spectroscopic investigations at CdS, ZnO, and ZnS is presented which allows for the development of comprehensive term schemes for neutral-impurity-exciton complexes in II–VI’s. Mainly three types of excited states exist for bound-exciton complexes: (i) states which are described through electronic excitation of one electron or hole, while the other particles involved remain in their single-particle ground states, (ii) states which result from the participation of holes from lowerlying valence bands, and (iii) vibronic or rotational excited states. Measurements in magnetic fields up to 15 T allow for a well-founded assignment of optical transitions to these states. Additionally, exciton complexes give rise to resonant phononic or electronic Raman scattering processes which often break symmetry selection rules and provide further information on the levels involved. The energies and Stokes shifts of the scattered lines sensitively depend on quantities as complexes extension and binding energy.


Excitation Spectrum Excited Electronic State Recombination Line Excitation Density Acceptor Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Baumert, I. Broser, J. Gutowski, and A. Hoffmann, Phys. Rev. B 27:6263 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    J. Gutowski, Phys. Rev. B 31:3611 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    J. Gutowski and I. Broser, Phys. Rev. B 31:3621 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    J. Gutowski and A. Hoffmann, Phys. Rev. B 37:4076 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    J. Gutowski, T. Hönig, N. Presser, and I. Broser, J. Lum. 40/41:433 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    G. Blattner, C. Klingshirn, R. Helbig, and R. Meinl, phys. stat. sol. (b) 107:105 (1981);ADSCrossRefGoogle Scholar
  7. 6a.
    G. Blattner, PhD thesis, University Karlsruhe (F.R.G.) 1982Google Scholar
  8. 7.
    J. Gutowski, N. Presser, and I. Broser, submitted to Phys. Rev. BGoogle Scholar
  9. 8.
    C. H. Henry, K. Nassau, and J. W. Shiever, Phys. Rev. B 4:2453 (1971)ADSCrossRefGoogle Scholar
  10. 9.
    D. G. Thomas, R. Dingle, and J. D. Cuthbert, Proc. 7th Int. Conf. on II–VI Semiconducting Compounds, Providence (USA) 1967, W.A. Benjamin Inc. (New York 1967), p. 863Google Scholar
  11. 10.
    K. Hummer, phys. stat. sol. (b) 56:249 (1973)ADSCrossRefGoogle Scholar
  12. 11.
    D. G. Thomas and J. J. Hopfield, Phys. Rev. 128:2135 (1962)ADSCrossRefGoogle Scholar
  13. 12.
    C. H. Henry, R. A. Faulkner, and K. Nassau, Phys. Rev. 183:798 (1969)ADSCrossRefGoogle Scholar
  14. 13.
    J. Puis, F. Henneberger, and J. Voigt, phys. stat. sol. (b) 119:291 (1983)ADSCrossRefGoogle Scholar
  15. 14.
    J. Puls, PhD thesis, Humboldt-University(GDR) 1985Google Scholar
  16. 15.
    J. Gutowski, Solid State Communications 58:583 (1986)CrossRefGoogle Scholar
  17. 16.
    B. S. Razbirin and I. N. Yral’tsev, Fiz. Tverd. Tela 13:605 (1971) (Sov. Phys. — Solid State 13:493 (1971))Google Scholar
  18. 17.
    J. Gutowski and I. Broser, J. Phys. C 20:3771 (1987)ADSCrossRefGoogle Scholar
  19. 18.
    J. R. Haynes, Phys. Rev. Letters 4:361 (1960)ADSCrossRefGoogle Scholar
  20. 19.
    P. J. Dean and D. C. Herbert, in ‘Excitons’, ed. K. Cho, Springer (Berlin) 1979, p. 55, and the literature cited thereinCrossRefGoogle Scholar
  21. 20.
    J. Gutowski, J. Crystal Growth 86:528 (1988)ADSCrossRefGoogle Scholar
  22. 21.
    J. Gutowski, I. Broser, and G. Kudlek, submitted to Phys. Rev BGoogle Scholar
  23. 22.
    D. Bimberg, W. Schairer, M. Sondergeld, and T. O. Yep, J. Lum. 3:175 (1970);ADSCrossRefGoogle Scholar
  24. 22a.
    A. M. White, P. J. Dean, L L Taylor, and R. C. Clarke, J. Phys. C 5:L110 (1972);ADSCrossRefGoogle Scholar
  25. 22b.
    A. M. White, J. Phys. C 6:1971 (1973);ADSCrossRefGoogle Scholar
  26. 22c.
    A. M. White, P. J. Dean, and B. Day, J. Phys. C 7:1400 (1974)ADSCrossRefGoogle Scholar
  27. 23.
    E. Molva and Le Si Dang, Phys. Rev. B 32:1156 (1985)ADSCrossRefGoogle Scholar
  28. 24.
    K. R. Elliott, G. C. Osbourn, D. L Smith, and T. C. McGill, Phys. Rev B 17:1808 (1978)ADSCrossRefGoogle Scholar
  29. 25.
    Le Si Dang, A. Nahmani, and R. Romestain, Solid State Commun. 46:743 (1983)CrossRefGoogle Scholar
  30. 26.
    K. Cho, W. Dreybrodt, P. Hiesinger, S. Suga, and F. Willmann, Proc. 12th Int. Conf. on the Physics of Semiconductors, Stuttgart (F.R.G.) 1974, Ed. M. H. Pilkuhn, B. G. Teubner (Stuttgart 1974), p 945Google Scholar
  31. 27.
    T. Hönig, J. Gutowski, and I. Broser, to be publishedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • J. Gutowski
    • 1
  1. 1.Institut für FestkörperphysikTechnische Universität BerlinBerlin (West) 12Germany

Personalised recommendations