Advertisement

Photoassisted Doping of II-VI Semiconductor Films

  • J. F. Schetzina
  • N. C. Giles
  • S. Hwang
  • R. L. Harper
Part of the NATO ASI Series book series (NSSB, volume 200)

Abstract

Photoassisted molecular beam epitaxy (PAMBE), in which the substrate is illuminated during film growth, is being employed in a new approach to controlled substitutional doping of II–VI compound semiconductors. Substitutional doping of these materials has been a long standing problem which has severely limited their applications potential. The PAMBE technique gives rise to dramatic changes in the electrical properties of as-grown epilayers. In particular, highly conducting n-type and p-type CdTe films have been grown using indium and antimony as n-type and p-type dopants, respectively. Double-crystal x-ray rocking curve data indicate that the doped epilayers are of high structural quality. Successful n-type doping of CdMnTe, a dilute magnetic semiconductor, with indium has also been achieved. Most recently, the photoassisted growth technique has been employed to prepare doped CdMnTe-CdTe quantum well structures and superlattices. In addition, HgCdTe films which exhibit excellent optical and electrical properties as well as exceptional structural perfection have been grown by the PAMBE technique.

Keywords

CdTe Film Substitutional Doping HgCdTe Film Film Growth Process Film Growth Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.N. Bicknell, N.C. Giles, and J.F. Schetzina, Appl, Phys, Lett, 49, 1095 (1986).ADSCrossRefGoogle Scholar
  2. 2.
    R.N. Bicknell, N.C. Giles, and J.F. Schetzina, Appl. Phys, Lett. 49, 1735 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    R.N. Bicknell, N.C. Giles, and J.F. Schetzina, Appl. Phys. Lett. 50, 691 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    R.N. Bicknell, N.C. Giles, and J.F. Schetzina, J. Vac. Sci. Technol. B 5, 701 (1987).ADSCrossRefGoogle Scholar
  5. 5.
    N.C. Giles, R.N. Bicknell, and J.F. Schetzina, J. Vac. Sci. Technol. A 5, 3064 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    R.N. Bicknell, N.C. Giles, and J.F. Schetzina, J. Vac. Sci. Technol. A 5, 3059 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    C. Uzar, R. Legros, Y. Marfaing, and R. Triboulet, Appl, Phys. Lett. 45, 879 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    Y. Marfaing, Rev. de Phys. Appl. 12, 211 (1977).CrossRefGoogle Scholar
  9. 9.
    T.H. Myers, Yawcheng Lo, R.N. Bicknell, and J.F. Schetzina, Appl. Phys. Lett. 42, 247 (1983).ADSCrossRefGoogle Scholar
  10. 10.
    T.H. Myers, J.F. Schetzina, T.J. Magee, and R.D. Ormond, J, Vac. Sci. Technol. A 1, 1598 (1983).ADSCrossRefGoogle Scholar
  11. 11.
    D.L. Dreifus, R.M. Kolbas, K.A. Harris, R.N. Bicknell, R.L. Harper, and J.F. Schetzina, Appl. Phys. Lett. 51, 931 (1987).ADSCrossRefGoogle Scholar
  12. 12.
    S. Yamada, J. Phys. Soc. Jpn. 15, 1940 (1962).ADSCrossRefGoogle Scholar
  13. 13.
    R.E. Halsted and M. Aven, Phys. Rev. Lett. 14, 64 (1965).ADSCrossRefGoogle Scholar
  14. 14.
    E. Molva, J.L. Pautrat, K. Saminadayar, G. Milchberg, and N. Magnea, Phys. Rev. B 30, 3344 (1984).ADSCrossRefGoogle Scholar
  15. 15.
    J.D. Benson and C.J. Summers, J. Cryst. Growth 86, 354 (1988).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • J. F. Schetzina
    • 1
  • N. C. Giles
    • 1
  • S. Hwang
    • 1
  • R. L. Harper
    • 1
  1. 1.Department of PhysicsNorth Carolina State UniversityRaleighUSA

Personalised recommendations