Conductivity Control of Wide Gap II-VI Compounds

  • Hiroshi Kukimoto
Part of the NATO ASI Series book series (NSSB, volume 200)


The rapidly expanding field of optoelectronics, has relied on the establishment of the epitaxial growth technology for III–V compounds and related alloys. In particular, the light emitting devices, LEDs and laser diodes, which have been developed to date are made of epitaxial layers of GaAs, GaP, InP, GaAsP, GaAlAs, InGaP, InGaAsP and InGaAlP, for which the defect densities are at low level and the n- and p-type conductivity control is easily achievable. These materials have the bandgap energies ranging from 0.8 eV to 2.4 eV, and are suited for the devices in optical fiber communication systems operating at 1.3–1.5 μm, in laser printing and readout at 0.78 μm, and in displays from red to green. For the light emitting devices operating at shorter wavelengths, e.g., blue LEDs required for full-color displays to be used together with already available green and red LEDs and short-wavelength laser diodes for high density memory and printing systems, one must rely on the wider-bandgap materials. Wide gap II–VI compounds, such as ZnSe, ZnS and ZnSSe, have long been expected as candidates for the purposes.


Epitaxial Layer Metalorganic Vapor Phase Epitaxy ZnSe Layer Optical Fiber Communication System MOVPE Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    W. Stutius, Organometallic vapor deposition of epitaxial ZnSe films on GaAs substrates, Appl. Phys. Lett. 33:656 (1978).ADSCrossRefGoogle Scholar
  2. 2).
    P. Blanconnier, M. Cerclet, P. Henoc, and A. M. Jean-Lois, Growth and characterization of undoped ZnSe epitaxial layers obtained by organometallic chemical vapour deposition, Thin Solid Films 55:375 (1978).ADSCrossRefGoogle Scholar
  3. 3).
    P. J. Wright and B. Cockayne, The organometallic chemical vapour deposition of ZnS and ZnSe at atmospheric pressure, J. Cryst. Growth 59:148 (1982).ADSCrossRefGoogle Scholar
  4. 4).
    F. A. Ponce, W. Stutius, and J. G. Werthen, Lattice structure at ZnSe-GaAs heterojunction interfaces prepared by organometallic chemical vapor deposition, Thin Solid Films 104:133 (1983).ADSCrossRefGoogle Scholar
  5. 5).
    S. Fujita, Y. Matsuda, and A. Sasaki, Growth and properties of undoped n-type ZnSe by low-temperature and low-pressure OMVPE, Jpn. J. Appl. Phys. 23:L360 (1984).ADSCrossRefGoogle Scholar
  6. 6).
    A. Yoshikawa, K. Tanaka, S. Yamaga, and K. Kasai, Effects of [H2Se]/[DMZn] molar ratio on epitaxial ZnSe films grown by low-pressure MOCVD, Jpn. J. Appl. Phys. 23:L773 (1984).ADSCrossRefGoogle Scholar
  7. 7).
    H. Mitsuhashi, I. Mitsuishi, M. Mizuta, and H. Kukimoto, Coherent growth of ZnSe on GaAs by MOCVD, Jpn. J. Appl. Phys. 24:L578 (1985).ADSCrossRefGoogle Scholar
  8. 8).
    H. Mitsuhashi, I. Mitsuishi, and H. Kukimoto, Growth kinetics in the MOVPE of ZnSe on GaAs using zinc and selenium alkyls, J. Cryst. Growth 77:219 (1986).ADSCrossRefGoogle Scholar
  9. 9).
    T. Yasuda, K. Hara, and H. Kukimoto, Low resistivity Al-doped ZnS grown by MOVPE, J. Cryst. Growth 77:485 (1986).ADSCrossRefGoogle Scholar
  10. 10).
    H. Mitsuhashi, I. Mitsuishi, and H. Kukimoto, MOCVD growth of ZnSxSe1-x epitaxial layers lattice-matched to GaAs using alkyls of Zn, S and Se, Jpn. J. Appl. Phys. 24:L864 (1985).ADSCrossRefGoogle Scholar
  11. 11).
    I. Mitsuishi, H. Mitsuhashi, and H. Kukimoto, MOCVD growth of ZnSxe1-x epitaxial layers lattice-matched to GaP substrates (to be published)Google Scholar
  12. 12).
    R. N. Bhargava, Materials growth and its impact on devices from wide band gap II–VI compounds, J. Cryst. Growth 86:873 (1988), and references therein.ADSCrossRefGoogle Scholar
  13. 13).
    T. Yasuda, I. Mitsuishi, and H. Kukimoto, Metalorganic vapor phase epitaxy of low-resistivity p-type ZnSe, Appl. Phys. Lett. 52:57 (1988).ADSCrossRefGoogle Scholar
  14. 14).
    K. Hara, T. Kojima, and H. Kukimoto, Epitaxial growth of CuGaS2 by metalorganic chemical vapor deposition, Jpn. J. Appl. Phys. 26:1107 (1987).ADSCrossRefGoogle Scholar
  15. 15).
    K. Hara, T. Shinozawa, J. Yoshino, and H. Kukimoto, MOVPE growth and characterization of I–III–VI2 chalcopyrite compounds, J. Cryst. Growth (in press) (1988).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Hiroshi Kukimoto
    • 1
  1. 1.Imaging Science and Engineering LaboratoryTokyo Institute of TechnologyMidori-ku, Yokohama 227Japan

Personalised recommendations