Some Aspects of Impurities in Wide Band Gap II-VI Compounds

  • H.-E. Gumlich
Part of the NATO ASI Series book series (NSSB, volume 200)


Since the early days of research on luminescence of II–VI-compounds the impurities play an important role in our knowledge of the electronic structure of matter, of vibrational states and of energy transport in crystals. Moreover the incorporation of impurities and their special behaviour is decisive for most of the technical devices based on II–VI-compounds. Besides of the luminescence many new experimental techniques have emerged during the last decades and a wealth of new data has been generated, involving many branches of solid state physics, semiconductor technology and inorganic chemistry. Simultaneously the theorists have worked on novel theoretical techniques needed to describe localized impurities which interact with covalent bonds, including new cluster models, first principles pseudopotentials and self consistent Greens function approaches. Quite a number of reviews has been published during the last years in this field [Schulz 82 and 87, Zunger 86] dealing especially with transition metals in II–VI-compounds. The reader is refered to these publications. It is therefore not the aim of this paper to cover the field of impurities in II–VIs entirely, but to discuss some general trends and to focus the attention on phenomena, which mark the frontier of our knowledge of the interaction of the lattice with the impurities. It characterizes the situation that our knowledge of impurities giving rise to stable p- and n-doping is a more or less phenomenological one, whereas the insights into the interaction of the transition metal having incomplete 3d shell with the lattice are relatively quite advanced [Schlüter and Baraff 86].


Local Magnetic Moment Molar Standard Enthalpy Luminescence Emission Nonmetal Atom Semimagnetic Semiconductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. W.M. Becker, R. Bylsma, M.M. Moriwaki, R.Y. Tao; Solid State Comm 49 (1984) 241CrossRefGoogle Scholar
  2. N.B. Brandt V.V. Moshchalkov; Advances in Physics 33 (1984) 193ADSCrossRefGoogle Scholar
  3. W. Busse, H.-E. Gumlich, B. Meißner, D. Theis; J.Lum. 12/13(1976) 693ADSCrossRefGoogle Scholar
  4. W. Busse, H.-E. Gumlich, W. Knaak, J. Schulze; J.Phys.Soc. Japan 49, Suppl. A, (1980) 581Google Scholar
  5. C. Benecke, W. Busse, H.-E. Gumlich, U.W. Pohl; phys.stat.sol.(b) 128(1985)Google Scholar
  6. C. Benecke, W. Busse, H.-E. Gumlich, H.-J. Moros; phvs.stat.sol.(b) 142 (1987)Google Scholar
  7. C. Benecke, W. Busse, H.-E. Gumlich, H. Hoffmann, S. Hoffmann, A. Krost, H. Waldmann (to be published 1988)Google Scholar
  8. M. Caldas, A. Fazzio, A. Zunger; Appl.Phys.Lett. 45 (1984) 671ADSCrossRefGoogle Scholar
  9. A. Fazzio, M. Caldas, A. Fazzio, A. Zunger; phys.Rev.B 30 (1984) 3430ADSCrossRefGoogle Scholar
  10. W. Gebhardt; “Excited state spectroscopy in Solids”, p. III, Editrice Compositori, Bologna 1987Google Scholar
  11. N. Gemma; Journ.Phys. C 17 (1984) 2333ADSCrossRefGoogle Scholar
  12. O. Goede, W. Heimbrodt; phys.stat.sol.(b) 146 (1988) 1ADSCrossRefGoogle Scholar
  13. G. Goetz, H.-J. Schulz; J. Lu m. 40/41 (1988) 415Google Scholar
  14. B.S. Gourary, F.J Adrian in “Solid State Physics” 10 Ed. Seitz and Turnbull Academic Press New York (1960) 127Google Scholar
  15. H. Kamimura, S. Watanabe; 18th International Conference on the Physics of Semiconductors Stockholm, World Scientific, (1986) 979Google Scholar
  16. J.A. Krumhansl, Schwartz; Phys.Rev. 89 (1953 1154)ADSCrossRefGoogle Scholar
  17. Landolt Börnstein; New series Vol. 17 b, O. Madelung (ed.) Springer verlag Berlin (1982)Google Scholar
  18. J.M. Langer, H. Heinrich; Phys.Rev.Lett. 55 (1985) 1414ADSCrossRefGoogle Scholar
  19. G. Mandel, F.F. Morehead, P.R. Wagner; Report II–VI-Laser Materials study, IBM Watson Research Center, New York (1964), NR 017–903/4–5–63Google Scholar
  20. D.S. McClure; J.Chem.Phys. 39 (1963) 2850ADSCrossRefGoogle Scholar
  21. R. Parrot, A. Geoffroy, C. Naud, W. Busse, H.-E. Gumlich; Phys.Rev. B 23 (1981) 5288ADSCrossRefGoogle Scholar
  22. U.W. Pohl; Doctoral Thesis, Technische Universität Berlin, Germany, D 83 (1988)Google Scholar
  23. R. Röhrig; Doctoral Thesis, Freiburg (1973)Google Scholar
  24. M. Schlüter, G.A. Baraff; 18th International Conference on the Physics of Semiconductors Stockholm,World Scientific, (1986) 793Google Scholar
  25. H.-J. Schulz; Materials Chem. and Phys. 16 (1987) 373, Elsevier SequoiaCrossRefGoogle Scholar
  26. H.-J. Schulz; J.Crystal Grows 59 (1982) 85ADSGoogle Scholar
  27. M.P. Vecchi, W. Giriat, L Videla; Appl.Phys.Lett. 38(1981) 99ADSCrossRefGoogle Scholar
  28. A. Zunger; 18th International Conference on the Physics of Semiconductors Stockholm;World Scientific, (1986) p.21Google Scholar
  29. A. Zunger, in H. Ehrenreich, F. Seitz and D. Tumbull (eds) Solid State Physics, Academic Press, New York, Vol. 39 (1986) 275Google Scholar
  30. A. Zunger; Phys.Rev.Lett. 54 (1985) 848ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • H.-E. Gumlich
    • 1
  1. 1.Institut für FestkörperphysikTU BerlinBerlin 12Germany

Personalised recommendations