Advertisement

The High Tc Tl-Ba-Ca-Cu-O Superconducting System

  • A. M. Hermann
  • Z. Z. Sheng

Abstract

Discoveries of 30-K La-Ba-Cu-O superconductor [1] and 90-K Y-Ba-Cu-O superconductor [2] have stimulated a worldwide race for new and even higher temperature superconductors. Breakthroughs were made by the discoveries of the 90-K Tl-Ba-Cu-O system [3,4], 110-K Bi-Sr-Ca-Cu-O system [5,6] and 120-K T1-Ba-Ca-Cu-O system [7–9]. Recently, high temperature superconductivity was also observed in the Tl-Sr-Ca-Cu-O system [10–12], and in the M-Tl-Sr-Ca-Cu-O with M = Pb [13,14] and rare earths [15]. In this paper, we present preparation procedures, structure, and some properties of the 120-K Tl-Ba-Ca-Cu-O superconductors. We discuss an unusual levitation phenomenon of the Tl-Ba-Ca-Cu-O superconductor due to flux pinning [16]. Finally, we present a new Tl2O3-vapor-process [17] which allows the highest temperature Tl-Ba-Ca-Cu-O superconductors to be easily made in the forms of complex bulk components, wires and fibers, and thick and thin films, and minimizes problems caused by toxicity and volatility of Tl starting compounds. Recent results on T1203 vapoer-processing of thin film Ba-Ca-Cu-O precursors are included.

Keywords

High Temperature Superconductor Flowing Oxygen Flux Pinning Quartz Boat Tetragonal Unit Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    J.G.Bednorz and K.A.Muller, Z.Phys.B 64, 189 (1986).ADSCrossRefGoogle Scholar
  2. 2).
    M.K.Wu, J.R.Ashburn, C.T.Torng, P.H.Hor, R.L.Meng, L.Gao, Z.J.Huang, Y.Q.Wang, and C.W.Chu, Phys.Rev.Lett. 58, 908 (1987).Google Scholar
  3. 3).
    Z.Z.Sheng and A.M.Hermann, Nature 332, 55 (1988).ADSCrossRefGoogle Scholar
  4. 4).
    Z.Z.Sheng, A.M.Hermann, A.E1 Ali, C.Almason, J.Estrada, T.Datta, and R.J.Matson, Phys.Rev.Lett. 60, 937 (1988).ADSCrossRefGoogle Scholar
  5. 5).
    H.Maeda, Y.Tanaka, M.Fukutomi, and T.Asano, Jpn.J.Appl.Phys.Lett. 27, L207 (1988).CrossRefGoogle Scholar
  6. 6).
    C.W.Chu, J.Bechtold, L.Gao, P.H.Hor, Z.J.Huang, R.L.Meng, Y.Y.Sun, Y.Q.Wang, and Y.Y.Xue, Phys.Rev.Lett. 60, 941 (1988).ADSCrossRefGoogle Scholar
  7. 7).
    Z.Z.Sheng and A.M.Hermann, Nature 332, 138 (1988).ADSCrossRefGoogle Scholar
  8. 8).
    Z.Z.Sheng, W.Kiehl, J.Bennett, A.E1 Ali, D.Marsh, G.D.Mooney, F.Arammash, J.Smith, D.Viar, and A.M.Hermann, Appl.Phys.Lett. 52, 1738 (1988).ADSCrossRefGoogle Scholar
  9. 9).
    A.M.Hermann, Z.Z.Sheng, D.C.Vier, S.Schultz, and S.B.Oseroff, Phys.Rev.B 37, 9742 (1988).ADSCrossRefGoogle Scholar
  10. 10).
    Z.Z.Sheng, A.M.Hermann, D.C.Vier, S.Schultz, S.B.Oseroff, D.J.George, and R.M.Hazen, Phys.Rev.B (to be published).Google Scholar
  11. 11).
    W.L.Lechter, M.S.Osofsky, R.J.Soulen,Jr., V.M.LeTourneau, E.F.Skelton, S.B.Qadri, W.T.Elam, H.A.Hein, L.Humphreys, C.Skowronek, A.K.Singh, J.V. Gilfrich, L.R.Toth, and S.A.Wolf (submitted).Google Scholar
  12. 12).
    S.Matsuda, S.Takeuchi, A.Soeta, T.Suzuki, K.Aihara, and T.Kamo (submitted).Google Scholar
  13. 13).
    M.A.Subramanian, C.C.Torardi, J.Gopalakrishnan, P.L.Gai, J.C.Calabrese, T.R.Askew, R.B.Flippen, and A.M.Sleight (submitted).Google Scholar
  14. 14).
    Z.Z.Sheng and A.M.Hermann (unpublished).Google Scholar
  15. 15).
    Z.Z.Sheng, L.Sheng, X.Fei, and A.M.Hermann (submitted).Google Scholar
  16. 16).
    W.G.Harter, A.M.Hermann, and Z.Z.Sheng, Appl.Phys.lett. 53, 1119 (1988).ADSCrossRefGoogle Scholar
  17. 17).
    Z.Z.Sheng, L.Sheng, H.M.Su, and A.M.Hermann, Appl.Phys.Lett. (accepted).Google Scholar
  18. 18).
    A.M.Hermann and Z.Z.Sheng, Appl.Phys.Lett. 51, 1854 (1987).ADSCrossRefGoogle Scholar
  19. 19).
    A.M.Hermann, Z.Z.Sheng, W.Kiehl, D.Marsh, F.Arammash, A.EI Ali, G.D.Mooney, L.Sheng, J.A.Woolam and A.Ahmed, Appl.Phys.Comm. 7, 275 (1987).ADSGoogle Scholar
  20. 20).
    R.M.Hazen, L.W.Finger, R.J.Angel, C.T.Prewitt, N.L.Ross, C.G.Hadidiacos, P.J.Heaney, D.R.Veblen, Z.Z.Sheng, A.E1 Ali, and A.M.Hermann, Phys.Rev.Lett. 60, 1657 (1988).ADSCrossRefGoogle Scholar
  21. 21).
    L.Gao, Z.J.Huang, R.L.Meng, P.H.Hor, J.Bechtold, Y.Y.Sun, C.W.Chu, Z.Z.Sheng, and A.M.Hermann, Nature 332, 623 (1988).ADSCrossRefGoogle Scholar
  22. 22).
    C.C.Torardi, M.A.Subramanian, J.C.Calabrese, J.Gopalakrishnan, E,M.McCarron, K.J.Morrissey, T.R.Askew, R.B.Flippen, U.Chowdhry, and A.M.Sleight, Phys.Rev.B 38, 225 (1988).ADSCrossRefGoogle Scholar
  23. 23).
    M.A.Subramanian, J.C.Calabrese, C.C.Torardi, J.Gopalakrishnan, T.R.Askew, R.B.Flippen, K.J.Morrissey, U.Chowdhry, and A.M.Sleight, Nature 332, 420 (1988).ADSCrossRefGoogle Scholar
  24. 24).
    C.C.Torardi, M.A.Subramanian, J.C.Calabrese, J.Gopalakrishnan, K.J.Morrissey, T.R.Askew,R.B. Flippen, U.Chowdhry, and A.M.Sleight, Science 240, 631 (1988).ADSCrossRefGoogle Scholar
  25. 25).
    S.S.P.Parkin, V.Y.Lee, E.M.Engler, A.I.Nazzal, T.C.Huang, G.Gorman, R.Savoy, and R.Beyers, Phys.Rev.Lett. 60, 2539 (1988).ADSCrossRefGoogle Scholar
  26. 26).
    Y.Luo, Y.L.Zhang, J.K.Liang, and K.K.Fung (submitted).Google Scholar
  27. 27).
    S.S.P.Parkin, V.Y.Lee, A.I.Nazzal, R.Savoy, R.Beyers, and S.J.La Placa, Phys.Rev.Lett. 61, 750 (1988).ADSGoogle Scholar
  28. 28).
    P.N.Peters, R.C.Sisk, E.W.Urban, C.Y.Huang, and M.K.Wu Appl.Phys.lett. 52, 2066 (1988).Google Scholar
  29. 29).
    Z.Z.Sheng, Y.H.Liu, X.Fei, L.Sheng, C.Dong, W.G.Harter, A.M.Hermann, D.C.Vier, S.Schultz, and S.B.Oseroff (submitted).Google Scholar
  30. 30).
    C.X.Qiu and I.Shih, Appl.Phys.lett. 53, 523 (1988).ADSCrossRefGoogle Scholar
  31. 31).
    C.X.Qiu and I.Shih, Appl.Phys.lett. 53, 1122 (1988).ADSCrossRefGoogle Scholar
  32. 32).
    S.H.Lion, N.J.Ianno, B.Johns, D.Thompson, D.Meyer, and J.A.Woollam, Conference on Science and Technology of Thin Film Superconductors, Colorado Springs, Nov. 14–18, 1988 (to be published by Plenum Publishing Corporation).Google Scholar
  33. 33).
    D.S.Dinley, E.L.Venturini, J.F.Kwark, R.J.Baughman, M.J.Carr, P.F.Hlava, J.E.Schirber, and B.Morosin, Physica C 152, 217 (1988).ADSGoogle Scholar
  34. 34).
    J.R.Thompsom, J.Brynestad, D.M.Kroeger, Y.C.Kim, S.T.Sekula, D.K.Christen, and E.D.Specht, (submitted to Phys.Rev.B).Google Scholar
  35. 35).
    T.Nakahara, International Symposium on Superconductivity, August 2831, 1988, Nagoya, Japan.Google Scholar
  36. 36).
    J.F.Kwark, E.L.Venturini, R.J.Baughman, B.Morosin, and D.S. Ginley (preprint).Google Scholar
  37. 37).
    S.Yazu, International Symposium on Superconductivity, August 28–31, 1988, Nagoya, Japan.Google Scholar
  38. 38).
    A.Iwasaki, N.Kobayashi, Y.koije, M.Kikuchi, Y.Syono, K.Noto, and Y.Muto (preprint).Google Scholar
  39. 39).
    D.S.Dinley, J.F.Kwark, E.L.Venturini, R.J.Baughman, R.P.Hellmer, M.A.Mitchell, and B.Morosin, Conference on Sience and Technology of Thin Film Superconductors, Colorado Springs, Nov. 14–18, 1988 (to be published by Plenum Publishing Corporation).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • A. M. Hermann
    • 1
  • Z. Z. Sheng
    • 1
  1. 1.Department of PhysicsUniversity of ArkansasFayettevilleUSA

Personalised recommendations