Mixed Ionic-Electronic Conduction in HTcS

  • D. J. Vischjager
  • J. Schram
  • A. Mackor
  • J. Schoonman


Application of HTcS materials as thin-film electrodes in solid state electrochemical systems, like solid oxide fuel cells (SOFC) and sensors, at elevated temperatures is a distinct possibility, provided that sufficient stability and electronic conductivity can be maintained. In addition, for these applications, HTcS materials need to exhibit also some oxygen ion conduction at the temperatures of operation. From the group of ceramic HTcS we have selected YBa2Cu3O7-x, 1, EuBa2Cu3O7-x,2 and La1.85Sr0.15CuO4, 3, for detailed study. These materials have been shown to exhibit variable stoichiometry in the oxygen sublattice which can be related with ionic conduction at elevated temperatures1–3.


Apparent Diffusion Coefficient Equivalent Circuit Solid Oxide Fuel Cell Transference Number Oxygen Sublattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.J. Vischjager, P.J. van der Put, J. Schram and J. Schoonman, Oxygen diffusion in YBa2Cu307 x; an impedance spectroscopy study, Solid State Ionics 27: 199 (1988).CrossRefGoogle Scholar
  2. 2.
    M. Schwartz, M. Rappaport, G. Hodes and D. Cahen, Electrochemical preparation and properties of oxygen deficient YBa2Cu307 x, Physica C 153–155: 1457 (1988).Google Scholar
  3. 3.
    E.J.M. O’Sullivan and B.P. Chang, Study of oxygen transport in Ba2YCu3O7 8 using a solid state electrochemical cell, Appl. Phys. Letters, in press. .Google Scholar
  4. 4.
    G. van Tendeloo and S. Amelinckx, Direct observation of the order-disorder transformation of the oxygen sublattice of YBa2Cu307 6, Phys. Stat. Sol. A 103: Kl (1987).Google Scholar
  5. 5.
    A.T. Fiory, M. Gurvitch, R.J. Cava and G.P. Espinosa, Effect of oxygen desorption on electrical transport in YBa2Cu307 6, Phys. Rev. B. 36: 7262 (1987).CrossRefGoogle Scholar
  6. 6.
    K.N. Tu, C.C. Tseui, S.I. Park and A. Levi, Oxygen diffusion in superconducting YBa2Cu307 8 oxides in ambient helium and oxygen, Phys. Rev. B 38: 772 (1988) and references cited therein.Google Scholar
  7. 7.
    P.K. Gallagher, Characterization of Ba2YCu30x as a function of oxygen partial pressure. Part I: Thermoanalytical Measurements, Adv. Ceramic Mater. 2: 632 (1987).Google Scholar
  8. 8.
    K. Kitazawa, H. Takagi, K. Kishio, T. Hasegawa, S. Uchida, S. Tajima, S. Tanaka and K. Fueki, Electronic properties of cuprate superconductors, Physica C 153–155: 9 (1988).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • D. J. Vischjager
    • 1
  • J. Schram
    • 1
  • A. Mackor
    • 2
  • J. Schoonman
    • 1
  1. 1.Laboratory for Inorganic ChemistryDelft University of TechnologyDelftThe Netherlands
  2. 2.TNO Institute of Applied ChemistryZeistThe Netherlands

Personalised recommendations